Suppr超能文献

小鼠精密切割肺切片中肺泡形成的延时成像

Time-lapse Imaging of Alveologenesis in Mouse Precision-cut Lung Slices.

作者信息

Akram Khondoker M, Yates Laura L, Mongey Róisín, Rothery Stephen, Gaboriau David C A, Sanderson Jeremy, Hind Matthew, Griffiths Mark, Dean Charlotte H

机构信息

Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.

National Heart and Lung Institute, Imperial College London, London, UK.

出版信息

Bio Protoc. 2019 Oct 20;9(20):e3403. doi: 10.21769/BioProtoc.3403.

Abstract

Alveoli are the gas-exchange units of lung. The process of alveolar development, alveologenesis, is regulated by a complex network of signaling pathways that act on various cell types including alveolar type I and II epithelial cells, fibroblasts and the vascular endothelium. Dysregulated alveologenesis results in bronchopulmonary dysplasia in neonates and in adults, disrupted alveolar regeneration is associated with chronic lung diseases including COPD and pulmonary fibrosis. Therefore, visualizing alveologenesis is critical to understand lung homeostasis and for the development of effective therapies for incurable lung diseases. We have developed a technique to visualize alveologenesis in real-time using a combination of widefield microscopy and image deconvolution of precision-cut lung slices. Here, we describe this live imaging technique in step-by-step detail. This time-lapse imaging technique can be used to capture the dynamics of individual cells within tissue slices over a long time period (up to 16 h), with minimal loss of fluorescence or cell toxicity.

摘要

肺泡是肺的气体交换单位。肺泡发育过程,即肺泡形成,受一个复杂的信号通路网络调控,这些信号通路作用于包括I型和II型肺泡上皮细胞、成纤维细胞和血管内皮细胞在内的多种细胞类型。肺泡形成失调会导致新生儿和成人的支气管肺发育不良,肺泡再生受损与包括慢性阻塞性肺疾病(COPD)和肺纤维化在内的慢性肺部疾病相关。因此,观察肺泡形成对于理解肺的稳态以及开发针对无法治愈的肺部疾病的有效疗法至关重要。我们开发了一种技术,通过结合宽场显微镜和精密切割肺切片的图像反卷积来实时观察肺泡形成。在此,我们详细逐步描述这种实时成像技术。这种延时成像技术可用于在很长一段时间(长达16小时)内捕获组织切片内单个细胞的动态,荧光损失和细胞毒性最小。

相似文献

1
Time-lapse Imaging of Alveologenesis in Mouse Precision-cut Lung Slices.
Bio Protoc. 2019 Oct 20;9(20):e3403. doi: 10.21769/BioProtoc.3403.
2
Live imaging of alveologenesis in precision-cut lung slices reveals dynamic epithelial cell behaviour.
Nat Commun. 2019 Mar 12;10(1):1178. doi: 10.1038/s41467-019-09067-3.
3
A three-dimensional study of alveologenesis in mouse lung.
Dev Biol. 2016 Jan 15;409(2):429-41. doi: 10.1016/j.ydbio.2015.11.017. Epub 2015 Nov 26.
4
The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired.
Curr Top Dev Biol. 2024;159:59-129. doi: 10.1016/bs.ctdb.2024.01.002. Epub 2024 Mar 6.
5
Alveologenesis: key cellular players and fibroblast growth factor 10 signaling.
Mol Cell Pediatr. 2016 Dec;3(1):17. doi: 10.1186/s40348-016-0045-7. Epub 2016 Apr 21.
6
A cell-centric view of lung alveologenesis.
Dev Dyn. 2021 Apr;250(4):482-496. doi: 10.1002/dvdy.271. Epub 2020 Nov 17.
7
WNT5a-ROR Signaling Is Essential for Alveologenesis.
Cells. 2020 Feb 7;9(2):384. doi: 10.3390/cells9020384.
8
Alveologenesis: What Governs Secondary Septa Formation.
Int J Mol Sci. 2021 Nov 9;22(22):12107. doi: 10.3390/ijms222212107.
9
Epithelial Wntless regulates postnatal alveologenesis.
Development. 2022 Jan 1;149(1). doi: 10.1242/dev.199505. Epub 2022 Jan 10.

引用本文的文献

2
Deciphering the impacts of modulating the Wnt-planar cell polarity (PCP) pathway on alveolar repair.
Front Cell Dev Biol. 2024 Feb 27;12:1349312. doi: 10.3389/fcell.2024.1349312. eCollection 2024.
3
A method for TAT-Cre recombinase-mediated floxed allele modification in ex vivo tissue slices.
Dis Model Mech. 2023 Nov 1;16(11). doi: 10.1242/dmm.050267. Epub 2023 Nov 3.
4
The Planar Polarity Component VANGL2 Is a Key Regulator of Mechanosignaling.
Front Cell Dev Biol. 2020 Oct 29;8:577201. doi: 10.3389/fcell.2020.577201. eCollection 2020.

本文引用的文献

1
Live imaging of alveologenesis in precision-cut lung slices reveals dynamic epithelial cell behaviour.
Nat Commun. 2019 Mar 12;10(1):1178. doi: 10.1038/s41467-019-09067-3.
2
The Strength of Mechanical Forces Determines the Differentiation of Alveolar Epithelial Cells.
Dev Cell. 2018 Feb 5;44(3):297-312.e5. doi: 10.1016/j.devcel.2018.01.008.
3
Imaging the lung: the old ways and the new.
Histol Histopathol. 2017 Apr;32(4):325-337. doi: 10.14670/HH-11-827. Epub 2016 Sep 14.
4
Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.
Int J Mol Sci. 2016 Jan 19;17(1):128. doi: 10.3390/ijms17010128.
5
Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue.
Am J Physiol Lung Cell Mol Physiol. 2015 Aug 15;309(4):L323-32. doi: 10.1152/ajplung.00061.2015. Epub 2015 Jun 19.
6
Modeling human lung development and disease using pluripotent stem cells.
Development. 2015 Jan 1;142(1):13-6. doi: 10.1242/dev.115469.
7
Lung regeneration: mechanisms, applications and emerging stem cell populations.
Nat Med. 2014 Aug;20(8):822-32. doi: 10.1038/nm.3642.
8
Paracrine cellular and extracellular matrix interactions with mesenchymal progenitors during pulmonary alveolar septation.
Birth Defects Res A Clin Mol Teratol. 2014 Mar;100(3):227-39. doi: 10.1002/bdra.23230. Epub 2014 Mar 17.
9
Lung development: orchestrating the generation and regeneration of a complex organ.
Development. 2014 Feb;141(3):502-13. doi: 10.1242/dev.098186.
10
Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia.
Am J Physiol Lung Cell Mol Physiol. 2013 Dec;305(12):L893-905. doi: 10.1152/ajplung.00267.2013. Epub 2013 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验