Suppr超能文献

相似文献

1
EAPR: explainable and augmented patient representation learning for disease prediction.
Health Inf Sci Syst. 2023 Nov 14;11(1):53. doi: 10.1007/s13755-023-00256-5. eCollection 2023 Dec.
2
Deep representation learning of patient data from Electronic Health Records (EHR): A systematic review.
J Biomed Inform. 2021 Mar;115:103671. doi: 10.1016/j.jbi.2020.103671. Epub 2020 Dec 31.
3
Treatment effect prediction with adversarial deep learning using electronic health records.
BMC Med Inform Decis Mak. 2020 Dec 14;20(Suppl 4):139. doi: 10.1186/s12911-020-01151-9.
4
Learning explainable task-relevant state representation for model-free deep reinforcement learning.
Neural Netw. 2024 Dec;180:106741. doi: 10.1016/j.neunet.2024.106741. Epub 2024 Sep 20.
6
DeepMPM: a mortality risk prediction model using longitudinal EHR data.
BMC Bioinformatics. 2022 Oct 14;23(1):423. doi: 10.1186/s12859-022-04975-6.
7
RAHM: Relation augmented hierarchical multi-task learning framework for reasonable medication stocking.
J Biomed Inform. 2020 Aug;108:103502. doi: 10.1016/j.jbi.2020.103502. Epub 2020 Jul 14.
8
A multi-filter deep transfer learning framework for image-based autism spectrum disorder detection.
Sci Rep. 2025 Apr 24;15(1):14253. doi: 10.1038/s41598-025-97708-7.
9
Universal representation learning for multivariate time series using the instance-level and cluster-level supervised contrastive learning.
Data Min Knowl Discov. 2024 May;38(3):1493-1519. doi: 10.1007/s10618-024-01006-1. Epub 2024 Feb 9.
10
Deep representation learning for individualized treatment effect estimation using electronic health records.
J Biomed Inform. 2019 Dec;100:103303. doi: 10.1016/j.jbi.2019.103303. Epub 2019 Oct 11.

本文引用的文献

1
Enriching representation learning using 53 million patient notes through human phenotype ontology embedding.
Artif Intell Med. 2023 May;139:102523. doi: 10.1016/j.artmed.2023.102523. Epub 2023 Feb 28.
2
HealthNet: A Health Progression Network via Heterogeneous Medical Information Fusion.
IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):6940-6954. doi: 10.1109/TNNLS.2022.3202305. Epub 2023 Oct 5.
4
Deep learning for temporal data representation in electronic health records: A systematic review of challenges and methodologies.
J Biomed Inform. 2022 Feb;126:103980. doi: 10.1016/j.jbi.2021.103980. Epub 2021 Dec 30.
6
PSSPNN: PatchShuffle Stochastic Pooling Neural Network for an Explainable Diagnosis of COVID-19 with Multiple-Way Data Augmentation.
Comput Math Methods Med. 2021 Mar 8;2021:6633755. doi: 10.1155/2021/6633755. eCollection 2021.
7
Bidirectional Representation Learning From Transformers Using Multimodal Electronic Health Record Data to Predict Depression.
IEEE J Biomed Health Inform. 2021 Aug;25(8):3121-3129. doi: 10.1109/JBHI.2021.3063721. Epub 2021 Aug 5.
8
Universal Physiological Representation Learning With Soft-Disentangled Rateless Autoencoders.
IEEE J Biomed Health Inform. 2021 Aug;25(8):2928-2937. doi: 10.1109/JBHI.2021.3062335. Epub 2021 Aug 5.
9
Language models are an effective representation learning technique for electronic health record data.
J Biomed Inform. 2021 Jan;113:103637. doi: 10.1016/j.jbi.2020.103637. Epub 2020 Dec 5.
10
Temporal tree representation for similarity computation between medical patients.
Artif Intell Med. 2020 Aug;108:101900. doi: 10.1016/j.artmed.2020.101900. Epub 2020 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验