Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
Mol Biol Cell. 2013 Aug;24(15):2419-30. doi: 10.1091/mbc.E13-03-0126. Epub 2013 Jun 12.
Protein localization plays a central role in cell biology. Although powerful tools exist to assay the spatial and temporal dynamics of proteins in living cells, our ability to control these dynamics has been much more limited. We previously used the phytochrome B- phytochrome-interacting factor light-gated dimerization system to recruit proteins to the plasma membrane, enabling us to control the activation of intracellular signals in mammalian cells. Here we extend this approach to achieve rapid, reversible, and titratable control of protein localization for eight different organelles/positions in budding yeast. By tagging genes at the endogenous locus, we can recruit proteins to or away from their normal sites of action. This system provides a general strategy for dynamically activating or inactivating proteins of interest by controlling their localization and therefore their availability to binding partners and substrates, as we demonstrate for galactose signaling. More importantly, the temporal and spatial precision of the system make it possible to identify when and where a given protein's activity is necessary for function, as we demonstrate for the mitotic cyclin Clb2 in nuclear fission and spindle stabilization. Our light-inducible organelle-targeting system represents a powerful approach for achieving a better understanding of complex biological systems.
蛋白质定位在细胞生物学中起着核心作用。尽管存在强大的工具来检测活细胞中蛋白质的时空动态,但我们控制这些动态的能力要有限得多。我们之前使用光敏色素 B-光敏色素相互作用因子光门二聚化系统将蛋白质募集到质膜上,从而能够控制哺乳动物细胞中细胞内信号的激活。在这里,我们将这种方法扩展到实现对出芽酵母中八个不同细胞器/位置的蛋白质定位进行快速、可逆和可滴定的控制。通过在内源基因座上标记基因,我们可以将蛋白质招募到或远离其正常作用部位。该系统为通过控制蛋白质的定位从而控制其与结合伙伴和底物的可用性来动态激活或失活感兴趣的蛋白质提供了一种通用策略,我们以半乳糖信号转导为例进行了演示。更重要的是,该系统的时间和空间精度使得确定给定蛋白质的活性对于功能的必要性成为可能,我们以核裂变和纺锤体稳定中的有丝分裂周期蛋白 Clb2 为例进行了演示。我们的光诱导细胞器靶向系统代表了一种实现更好地理解复杂生物系统的强大方法。