Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany; Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.
J Neurosci Methods. 2023 Feb 1;385:109761. doi: 10.1016/j.jneumeth.2022.109761. Epub 2022 Dec 5.
Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose-response interrelations are poorly understood. Placing explanted brain tissue, mostly from mice or rats, into a uniform direct current electric field (dcEF) is a well-established in vitro system to elucidate the neural mechanism of tDCS. Nevertheless, we will show that generating a defined, uniform, and constant dcEF throughout a brain slice is challenging. This article critically reviews the methods used to generate and calibrate a uniform dcEF. We use finite element analysis (FEA) to evaluate the widely used parallel electrode configuration and show that it may not reliably generate uniform dcEF within a brain slice inside an open interface or submerged chamber. Moreover, equivalent circuit analysis and measurements inside a testing chamber suggest that calibrating the dcEF intensity with two recording electrodes can inaccurately capture the true EF magnitude in the targeted tissue when specific criteria are not met. Finally, we outline why microfluidic chambers are an effective and calibration-free approach of generating spatiotemporally uniform dcEF for DCS in vitro studies, facilitating accurate and fine-scale dcEF adjustments. We are convinced that improving the precision and addressing the limitations of current experimental platforms will substantially improve the reproducibility of in vitro experimental results. A better mechanistic understanding of dose-response relations will ultimately facilitate more effective non-invasive stimulation therapies in patients.
经颅直流电刺激(tDCS)是一种有前途的非侵入性脑刺激方法,可用于治疗神经和精神疾病。然而,其潜在的神经机制仍需要进一步研究。实际上,剂量-反应关系还不太清楚。将离体脑组织(主要来自小鼠或大鼠)置于均匀的直流电场(dcEF)中是一种已建立的体外系统,可阐明 tDCS 的神经机制。然而,我们将表明,在脑片中产生定义明确、均匀且恒定的 dcEF 具有挑战性。本文批判性地回顾了产生和校准均匀 dcEF 的方法。我们使用有限元分析(FEA)来评估广泛使用的平行电极配置,并表明它可能无法在开放式接口或淹没式腔室内的脑片中可靠地产生均匀的 dcEF。此外,等效电路分析和测试室内的测量表明,当未满足特定标准时,使用两个记录电极校准 dcEF 强度可能无法准确捕获目标组织中的真实 EF 幅度。最后,我们概述了为什么微流控室是一种有效的方法,可以在体外 DCS 研究中产生时空均匀的 dcEF,而无需校准,从而可以进行精确和精细的 dcEF 调整。我们坚信,提高精度并解决当前实验平台的局限性将大大提高体外实验结果的可重复性。更好地了解剂量-反应关系将最终有助于为患者提供更有效的非侵入性刺激疗法。