Suppr超能文献

开发住院患者菌血症的机器学习预测算法。

Developing Machine-Learning Prediction Algorithm for Bacteremia in Admitted Patients.

作者信息

Mahmoud Ebrahim, Al Dhoayan Mohammed, Bosaeed Mohammad, Al Johani Sameera, Arabi Yaseen M

机构信息

Department of Infectious Disease, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia.

Department of Health Informatics, CPHHI, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.

出版信息

Infect Drug Resist. 2021 Feb 25;14:757-765. doi: 10.2147/IDR.S293496. eCollection 2021.

Abstract

PURPOSE

Bloodstream infection among hospitalized patients is associated with serious adverse outcomes. Blood culture is routinely ordered in patients with suspected infections, although 90% of blood cultures do not show any growth of organisms. The evidence regarding the prediction of bacteremia is scarce.

PATIENTS AND METHODS

A retrospective review of blood cultures requested for a cohort of admitted patients between 2017 and 2019 was undertaken. Several machine-learning models were used to identify the best prediction model. Additionally, univariate and multivariable logistic regression was used to determine the predictive factors for bacteremia.

RESULTS

A total of 36,405 blood cultures of 7157 patients were done. There were 2413 (6.62%) positive blood cultures. The best prediction was by using NN with the high specificity of 88% but low sensitivity. There was a statistical difference in the following factors: longer admission days before the blood culture, presence of a central line, and higher lactic acid-more than 2 mmol/L.

CONCLUSION

Despite the low positive rate of blood culture, machine learning could predict positive blood culture with high specificity but minimum sensitivity. Yet, the SIRS score, qSOFA score, and other known factors were not good prognostic factors. Further improvement and training would possibly enhance machine-learning performance.

摘要

目的

住院患者的血流感染与严重不良后果相关。对于疑似感染患者,通常会进行血培养检查,尽管90%的血培养结果未显示有任何微生物生长。关于菌血症预测的证据很少。

患者与方法

对2017年至2019年间一批入院患者所做的血培养检查进行回顾性分析。使用了几种机器学习模型来确定最佳预测模型。此外,采用单变量和多变量逻辑回归来确定菌血症的预测因素。

结果

共对7157例患者进行了36405次血培养检查。其中2413次(6.62%)血培养结果呈阳性。最佳预测方法是使用神经网络,其特异性高达88%,但敏感性较低。以下因素存在统计学差异:血培养检查前住院天数较长、存在中心静脉导管以及乳酸水平较高(超过2 mmol/L)。

结论

尽管血培养阳性率较低,但机器学习能够以高特异性但低敏感性预测血培养阳性结果。然而,全身炎症反应综合征(SIRS)评分、快速序贯器官功能衰竭评估(qSOFA)评分以及其他已知因素并非良好的预后因素。进一步改进和训练可能会提高机器学习的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ce/7920583/a4ef78dc4def/IDR-14-757-g0001.jpg

相似文献

1
Developing Machine-Learning Prediction Algorithm for Bacteremia in Admitted Patients.
Infect Drug Resist. 2021 Feb 25;14:757-765. doi: 10.2147/IDR.S293496. eCollection 2021.
2
Clinical prediction rule is more useful than qSOFA and the Sepsis-3 definition of sepsis for screening bacteremia.
Am J Emerg Med. 2021 Aug;46:84-89. doi: 10.1016/j.ajem.2021.03.023. Epub 2021 Mar 11.
3
[Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].
Zhonghua Shao Shang Za Zhi. 2018 Jun 20;34(6):343-348. doi: 10.3760/cma.j.issn.1009-2587.2018.06.006.
4
Using Machine Learning to Predict Bacteremia in Febrile Children Presented to the Emergency Department.
Diagnostics (Basel). 2020 May 15;10(5):307. doi: 10.3390/diagnostics10050307.
10
Clinical utility of blood cultures drawn from indwelling central venous catheters in hospitalized patients with cancer.
Ann Intern Med. 1999 Nov 2;131(9):641-7. doi: 10.7326/0003-4819-131-9-199911020-00002.

引用本文的文献

2
Bacteremia in the Gulf Cooperation Council Region: A Review of the Literature 2013-2023.
Infect Drug Resist. 2025 May 7;18:2329-2355. doi: 10.2147/IDR.S497241. eCollection 2025.
3
Leveraging explainable artificial intelligence for early prediction of bloodstream infections using historical electronic health records.
PLOS Digit Health. 2024 Nov 14;3(11):e0000506. doi: 10.1371/journal.pdig.0000506. eCollection 2024 Nov.
5
Clinical predictors of hospital-acquired bloodstream infections: A healthcare system analysis.
Spartan Med Res J. 2024 Sep 10;9(3):123414. doi: 10.51894/001c.123414. eCollection 2024.
7
A Machine Learning Predictive Model of Bloodstream Infection in Hospitalized Patients.
Diagnostics (Basel). 2024 Feb 17;14(4):445. doi: 10.3390/diagnostics14040445.
10
[New predictive models of bacteremia in the emergency department: a step forward].
Rev Esp Quimioter. 2022 Aug;35(4):344-356. doi: 10.37201/req/015.2022. Epub 2022 Apr 13.

本文引用的文献

4
New definition of sepsis and septic shock: What does it give us?
Med Intensiva. 2017 Jan-Feb;41(1):38-40. doi: 10.1016/j.medin.2016.03.008. Epub 2016 May 30.
5
The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).
JAMA. 2016 Feb 23;315(8):801-10. doi: 10.1001/jama.2016.0287.
6
Culture if spikes? Indications and yield of blood cultures in hospitalized medical patients.
J Hosp Med. 2016 May;11(5):336-40. doi: 10.1002/jhm.2541. Epub 2016 Jan 13.
10
Prediction of blood culture results by measuring procalcitonin levels and other inflammatory biomarkers.
Am J Emerg Med. 2014 Apr;32(4):330-3. doi: 10.1016/j.ajem.2013.12.035. Epub 2013 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验