Suppr超能文献

相似文献

1
Assessment of the timeliness and robustness for predicting adult sepsis.
iScience. 2021 Jan 26;24(2):102106. doi: 10.1016/j.isci.2021.102106. eCollection 2021 Feb 19.
3
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
Crit Care Med. 2018 Apr;46(4):547-553. doi: 10.1097/CCM.0000000000002936.
6
An interpretable deep-learning model for early prediction of sepsis in the emergency department.
Patterns (N Y). 2021 Jan 19;2(2):100196. doi: 10.1016/j.patter.2020.100196. eCollection 2021 Feb 12.
7
The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit.
Int J Med Inform. 2020 Sep;141:104176. doi: 10.1016/j.ijmedinf.2020.104176. Epub 2020 May 21.
9
Early Prediction of Sepsis in the ICU Using Machine Learning: A Systematic Review.
Front Med (Lausanne). 2021 May 28;8:607952. doi: 10.3389/fmed.2021.607952. eCollection 2021.
10
An Explainable Artificial Intelligence Predictor for Early Detection of Sepsis.
Crit Care Med. 2020 Nov;48(11):e1091-e1096. doi: 10.1097/CCM.0000000000004550.

引用本文的文献

1
Improved Interpretability Without Performance Reduction in a Sepsis Prediction Risk Score.
Diagnostics (Basel). 2025 Jan 28;15(3):307. doi: 10.3390/diagnostics15030307.
2
A scoping review of robustness concepts for machine learning in healthcare.
NPJ Digit Med. 2025 Jan 17;8(1):38. doi: 10.1038/s41746-024-01420-1.
5
Timesias: A machine learning pipeline for predicting outcomes from time-series clinical records.
STAR Protoc. 2021 Jul 2;2(3):100639. doi: 10.1016/j.xpro.2021.100639. eCollection 2021 Sep 17.

本文引用的文献

1
Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy.
Intensive Care Med. 2020 Mar;46(3):383-400. doi: 10.1007/s00134-019-05872-y. Epub 2020 Jan 21.
2
Pediatric Severe Sepsis Prediction Using Machine Learning.
Front Pediatr. 2019 Oct 11;7:413. doi: 10.3389/fped.2019.00413. eCollection 2019.
3
Leveraging implicit expert knowledge for non-circular machine learning in sepsis prediction.
Artif Intell Med. 2019 Sep;100:101725. doi: 10.1016/j.artmed.2019.101725. Epub 2019 Sep 24.
4
Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs.
Comput Biol Med. 2019 Jun;109:79-84. doi: 10.1016/j.compbiomed.2019.04.027. Epub 2019 Apr 24.
5
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery.
Nat Biomed Eng. 2018 Oct;2(10):749-760. doi: 10.1038/s41551-018-0304-0. Epub 2018 Oct 10.
7
Sepsis: Changing Definitions, Unchanging Treatment.
Front Pediatr. 2019 Jan 23;6:425. doi: 10.3389/fped.2018.00425. eCollection 2018.
8
Development and Evaluation of a Machine Learning Model for the Early Identification of Patients at Risk for Sepsis.
Ann Emerg Med. 2019 Apr;73(4):334-344. doi: 10.1016/j.annemergmed.2018.11.036. Epub 2019 Jan 17.
9
Recent advances in biosensors for diagnosis and detection of sepsis: A comprehensive review.
Biosens Bioelectron. 2019 Jan 15;124-125:205-215. doi: 10.1016/j.bios.2018.10.034. Epub 2018 Oct 19.
10
The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.
Nat Med. 2018 Nov;24(11):1716-1720. doi: 10.1038/s41591-018-0213-5. Epub 2018 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验