Bo Zi-Hao, Qiao Hui, Tian Chong, Guo Yuchen, Li Wuchao, Liang Tiantian, Li Dongxue, Liao Dan, Zeng Xianchun, Mei Leilei, Shi Tianliang, Wu Bo, Huang Chao, Liu Lu, Jin Can, Guo Qiping, Yong Jun-Hai, Xu Feng, Zhang Tijiang, Wang Rongpin, Dai Qionghai
BNRist and School of Software, Tsinghua University, Beijing, Beijing 100084, China.
BNRist and Department of Automation, Tsinghua University, Beijing, Beijing 100084, China.
Patterns (N Y). 2021 Jan 22;2(2):100197. doi: 10.1016/j.patter.2020.100197. eCollection 2021 Feb 12.
Intracranial aneurysm (IA) is an enormous threat to human health, which often results in nontraumatic subarachnoid hemorrhage or dismal prognosis. Diagnosing IAs on commonly used computed tomographic angiography (CTA) examinations remains laborious and time consuming, leading to error-prone results in clinical practice, especially for small targets. In this study, we propose a fully automatic deep-learning model for IA segmentation that can be applied to CTA images. Our model, called Global Localization-based IA Network (GLIA-Net), can incorporate the global localization prior and generates the fine-grain three-dimensional segmentation. GLIA-Net is trained and evaluated on a big internal dataset (1,338 scans from six institutions) and two external datasets. Evaluations show that our model exhibits good tolerance to different settings and achieves superior performance to other models. A clinical experiment further demonstrates the clinical utility of our technique, which helps radiologists in the diagnosis of IAs.
颅内动脉瘤(IA)对人类健康构成巨大威胁,常导致非创伤性蛛网膜下腔出血或预后不良。在常用的计算机断层血管造影(CTA)检查中诊断IA仍然费力且耗时,在临床实践中容易出错,尤其是对于小目标。在本研究中,我们提出了一种可应用于CTA图像的用于IA分割的全自动深度学习模型。我们的模型称为基于全局定位的IA网络(GLIA-Net),它可以整合全局定位先验信息并生成细粒度的三维分割。GLIA-Net在一个大型内部数据集(来自六个机构的1338次扫描)和两个外部数据集上进行训练和评估。评估表明,我们的模型对不同设置具有良好的耐受性,并且性能优于其他模型。一项临床实验进一步证明了我们技术的临床实用性,它有助于放射科医生诊断IA。