Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States.
Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.
Environ Sci Technol. 2021 Mar 16;55(6):3559-3567. doi: 10.1021/acs.est.0c07922. Epub 2021 Mar 4.
An interparticle system has been devised, allowing airborne singlet oxygen to transfer between particle surfaces. Singlet oxygen is photogenerated on a sensitizer particle, where it then travels through air to a second particle bearing an oxidizable compound-a particulate-based approach with some similarities to reactive oxygen quenching in the atmosphere. In atmospheric photochemistry, singlet oxygen is generated by natural particulate matter, but its formation and quenching between particles has until now not been determined. Determining how singlet oxygen reacts on a second surface is useful and was developed by a three-phase system (particle-air-particle) particulate photoreaction with tunable quenching properties. We identify singlet oxygen quenching directly by near-IR phosphorescence in the airborne state and at the air/particle interface for total quenching rate constants () of adsorbed anthracene trapping agents. The air/solid interface of singlet oxygen by anthracene-coated particles was (2.8 ± 0.8) × 10 g mol s for 9,10-dimethylanthracene and (2.1 ± 0.9) × 10 g mol s for 9,10-anthracene dipropionate dianion, and the lifetime of airborne singlet oxygen was measured to be 550 μs. These real-time interactions and particle-induced quenching steps open up new opportunities for singlet oxygen research of atmospheric and particulate processes.
设计了一种粒子间体系,使空气中的单线态氧能够在粒子表面之间转移。单线态氧在敏化粒子上光生成,然后通过空气传输到带有可氧化化合物的第二粒子上——这是一种与大气中反应性氧猝灭有些相似的基于颗粒的方法。在大气光化学中,单线态氧是由天然颗粒物质产生的,但直到现在,还没有确定其在颗粒之间的形成和猝灭。确定单线态氧在第二表面上的反应方式是有用的,这是通过具有可调猝灭特性的三相系统(颗粒-空气-颗粒)颗粒光反应来实现的。我们通过空气中的近红外磷光直接识别单线态氧的猝灭,并在空气/颗粒界面处测量总猝灭速率常数(),用于吸附蒽捕获剂。通过蒽涂层颗粒的空气/固体界面,9,10-二甲基蒽的为(2.8 ± 0.8)×10 g mol s,9,10-蒽二丙酸二阴离子的为(2.1 ± 0.9)×10 g mol s,空气中的单线态氧的寿命被测量为 550 μs。这些实时相互作用和颗粒诱导的猝灭步骤为大气和颗粒过程中的单线态氧研究开辟了新的机会。