Kuznetsov Nikolai, Qin Huajun, Flajšman Lukáš, van Dijken Sebastiaan
NanoSpin, Department of Applied Physics, Aalto University School of Science, Aalto, FI-00076, Finland.
School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Adv Mater. 2025 Aug;37(33):e2502474. doi: 10.1002/adma.202502474. Epub 2025 Jun 3.
Metamaterials, designed to exhibit properties beyond those found in nature, enable unprecedented control over physical phenomena through flexible band structure engineering. This work introduces a hybrid magnonic-plasmonic metamaterial that allows spatiotemporal manipulation of spin-wave transport at micrometer scales and sub-microsecond timescales. The system integrates a plasmonic metamaterial, comprising Au nanodisk arrays arranged in a 1D periodic stripe pattern, with a low-damping yttrium iron garnet (YIG) film as the spin-wave transport medium. Short laser pulses (100-500 ns) excite surface lattice resonances (SLRs) in the plasmonic stripes, inducing thermoplasmonic heating and generating a striped temperature profile. This dynamic thermal modulation periodically alters the YIG film's saturation magnetization, forming a laser-controlled magnonic crystal. Time-resolved propagating spin-wave spectroscopy reveals tunable bandgaps and minibands arising from Bragg reflection. By adjusting the plasmonic stripe pattern, laser pulse duration, or power, this system enables precise control over spin-wave transport, paving the way for reconfigurable wave-based computing devices.
超材料旨在展现出超越自然界中发现的特性,通过灵活的能带结构工程实现对物理现象前所未有的控制。这项工作引入了一种混合磁子 - 等离子体超材料,它能够在微米尺度和亚微秒时间尺度上对自旋波传输进行时空操控。该系统将一种等离子体超材料(由排列成一维周期性条纹图案的金纳米盘阵列组成)与作为自旋波传输介质的低阻尼钇铁石榴石(YIG)薄膜集成在一起。短激光脉冲(100 - 500纳秒)激发等离子体条纹中的表面晶格共振(SLR),引发热等离子体加热并产生条纹状温度分布。这种动态热调制周期性地改变YIG薄膜的饱和磁化强度,形成一个激光控制的磁子晶体。时间分辨传播自旋波光谱揭示了由布拉格反射产生的可调带隙和微带。通过调整等离子体条纹图案、激光脉冲持续时间或功率,该系统能够对自旋波传输进行精确控制,为基于波的可重构计算设备铺平了道路。