Suppr超能文献

基于贝叶斯网络的特征选择高维多模态分子数据聚类分析。

Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data.

机构信息

Department of Biostatistics, Yale University, New Haven, CT, USA.

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

出版信息

Sci Rep. 2021 Mar 4;11(1):5146. doi: 10.1038/s41598-021-84514-0.

Abstract

Multi-modal molecular profiling data in bulk tumors or single cells are accumulating at a fast pace. There is a great need for developing statistical and computational methods to reveal molecular structures in complex data types toward biological discoveries. Here, we introduce Nebula, a novel Bayesian integrative clustering analysis for high dimensional multi-modal molecular data to identify directly interpretable clusters and associated biomarkers in a unified and biologically plausible framework. To facilitate computational efficiency, a variational Bayes approach is developed to approximate the joint posterior distribution to achieve model inference in high-dimensional settings. We describe a pan-cancer data analysis of genomic, epigenomic, and transcriptomic alterations in close to 9000 tumor samples across canonical oncogenic signaling pathways, immune and stemness phenotype, with comparisons to state-of-the-art clustering methods. We demonstrate that Nebula has the unique advantage of revealing patterns on the basis of shared pathway alterations, offering biological and clinical insights beyond tumor type and histology in the pan-cancer analysis setting. We also illustrate the utility of Nebula in single cell data for immune cell decomposition in peripheral blood samples.

摘要

多模态分子谱数据在批量肿瘤或单细胞中快速积累。非常需要开发统计和计算方法来揭示复杂数据类型中的分子结构,以实现生物学发现。在这里,我们介绍 Nebula,这是一种新颖的贝叶斯综合聚类分析方法,用于高维多模态分子数据,以在统一且具有生物学合理性的框架中直接识别可解释的聚类和相关生物标志物。为了提高计算效率,开发了变分贝叶斯方法来逼近联合后验分布,以在高维环境中实现模型推断。我们描述了对近 9000 个肿瘤样本的基因组、表观基因组和转录组改变的泛癌数据分析,这些样本跨越了经典致癌信号通路、免疫和干性表型,并与最先进的聚类方法进行了比较。我们证明了 Nebula 具有基于共享途径改变揭示模式的独特优势,在泛癌分析环境中提供了超越肿瘤类型和组织学的生物学和临床见解。我们还说明了 Nebula 在用于外周血样本中免疫细胞分解的单细胞数据中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f310/7933297/677acef688c8/41598_2021_84514_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验