Chen Tianqi, Zhao Hongyu, Tan Chichun, Constable Todd, Yip Sarah, Zhao Yize
Department of Biostatistics, Yale University, 300 George St, New Haven, CT 06520, United States.
Department of Biostatistics, Brown University, 121 S. Main St, Providence, RI 02912, United States.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae045.
Converging evidence indicates that the heterogeneity of cognitive profiles may arise through detectable alternations in brain functional connectivity. Despite an unprecedented opportunity to uncover neurobiological subtypes through clustering or subtyping analyses on multi-state functional connectivity, few existing approaches are applicable to accommodate the network topology and unique biological architecture. To address this issue, we propose an innovative Bayesian nonparametric network-variate clustering analysis to uncover subgroups of individuals with homogeneous brain functional network patterns under multiple cognitive states. In light of the existing neuroscience literature, we assume there are unknown state-specific modular structures within functional connectivity. Concurrently, we identify informative network features essential for defining subtypes. To further facilitate practical use, we develop a computationally efficient variational inference algorithm to approximate posterior inference with satisfactory estimation accuracy. Extensive simulations show the superiority of our method. We apply the method to the Adolescent Brain Cognitive Development (ABCD) study, and identify neurodevelopmental subtypes and brain sub-network phenotypes under each state to signal neurobiological heterogeneity, suggesting promising directions for further exploration and investigation in neuroscience.
越来越多的证据表明,认知特征的异质性可能源于大脑功能连接中可检测到的变化。尽管有前所未有的机会通过对多状态功能连接进行聚类或亚型分析来揭示神经生物学亚型,但现有的方法很少适用于适应网络拓扑和独特的生物学结构。为了解决这个问题,我们提出了一种创新的贝叶斯非参数网络变量聚类分析,以揭示在多种认知状态下具有同质大脑功能网络模式的个体亚组。根据现有的神经科学文献,我们假设功能连接中存在未知的特定状态模块化结构。同时,我们识别出定义亚型所需的信息性网络特征。为了进一步便于实际应用,我们开发了一种计算效率高的变分推理算法,以近似后验推理并具有令人满意的估计精度。大量模拟显示了我们方法的优越性。我们将该方法应用于青少年大脑认知发展(ABCD)研究,识别出每种状态下的神经发育亚型和脑子网表型,以表明神经生物学异质性,为神经科学的进一步探索和研究指明了有前景的方向。