Department of Computer Engineering, Kwangwoon University, Seoul 01897, Korea.
School of Electrical Engineering, College of Creative Engineering, Kookmin University, Seoul 02707, Korea.
Sensors (Basel). 2021 Feb 24;21(5):1568. doi: 10.3390/s21051568.
Recently, the interest in biometric authentication based on electrocardiograms (ECGs) has increased. Nevertheless, the ECG signal of a person may vary according to factors such as the emotional or physical state, thus hindering authentication. We propose an adaptive ECG-based authentication method that performs incremental learning to identify ECG signals from a subject under a variety of measurement conditions. An incremental support vector machine (SVM) is adopted for authentication implementing incremental learning. We collected ECG signals from 11 subjects during 10 min over six days and used the data from days 1 to 5 for incremental learning, and those from day 6 for testing. The authentication results show that the proposed system consistently reduces the false acceptance rate from 6.49% to 4.39% and increases the true acceptance rate from 61.32% to 87.61% per single ECG wave after incremental learning using data from the five days. In addition, the authentication results tested using data obtained a day after the latest training show the false acceptance rate being within reliable range (3.5-5.33%) and improvement of the true acceptance rate (70.05-87.61%) over five days.
最近,基于心电图 (ECG) 的生物特征认证引起了人们的兴趣。然而,由于人的情绪或身体状态等因素,个体的心电图信号可能会发生变化,从而阻碍认证。我们提出了一种基于 ECG 的自适应认证方法,该方法可对在各种测量条件下的主体的 ECG 信号进行增量学习识别。采用增量支持向量机 (SVM) 进行认证,实现增量学习。我们在六天的时间里从 11 名受试者那里收集了 10 分钟的 ECG 信号,并使用前五天的数据进行增量学习,而使用第六天的数据进行测试。认证结果表明,与未经增量学习的数据相比,该系统在使用五天的数据进行增量学习后,每个 ECG 波的错误接受率从 6.49%持续降低至 4.39%,真确接受率从 61.32%提高至 87.61%。此外,使用最新训练后一天获取的数据进行认证测试的结果表明,错误接受率在可靠范围内 (3.5-5.33%),并且在五天内真确接受率 (70.05-87.61%)得到了提高。