Suppr超能文献

通过分析从可穿戴设备采集的表面肌电信号来评估多类支持向量机策略和核调整水平在手部姿势识别中的应用

Evaluation of multi-class support-vector machines strategies and kernel adjustment levels in hand posture recognition by analyzing sEMG signals acquired from a wearable device.

作者信息

Falcari Thays, Saotome Osamu, Pires Ricardo, Campo Alexandre Brincalepe

机构信息

1Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50 - Vila das Acacias, São José dos Campos, SP 12228-900 Brazil.

2Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), R. Pedro Vicente, 625 - Canindé, São Paulo, SP 01109-010 Brazil.

出版信息

Biomed Eng Lett. 2019 Nov 27;10(2):275-284. doi: 10.1007/s13534-019-00141-9. eCollection 2020 May.

Abstract

One-vs-One (OVO) and One-vs-All (OVA) are decomposition methods for multi-class strategies used to allow binary Support-Vector Machines (SVM) to transform a given k-class problem into pairwise small problems. In this context, the present work proposes the analysis of these two decomposition methods applied to the hand posture recognition problem in which the sEMG data of eight participants were collected by means of an 8-channel armband bracelet located on the forearm. Linear, Polynomial and Radial Basis Function kernels functions and its adjustments level were implemented combined to the strategies OVO and OVA to compare the performance of the SVM when mapping posture data into the classification spaces spanned by the studied kernels. Acquired sEMG signals were segmented considering 0.16 s e 0.32 s time windows. Root Mean Square (RMS) feature was extracted from each time window of each posture and used for SVM training. The present work focused in investigating the relationship between the multi-class strategies combined to kernels adjustments levels and SVM classification performance. Promising results were observed using OVA strategy which presents a reduced number of binary SVM implementation achieved a mean accuracy of 97.63%.

摘要

一对一(OVO)和一对多(OVA)是用于多类策略的分解方法,用于使二元支持向量机(SVM)将给定的k类问题转化为成对的小问题。在此背景下,本研究提出对这两种分解方法应用于手部姿势识别问题进行分析,其中八名参与者的表面肌电(sEMG)数据通过位于前臂的8通道臂带式手环进行采集。将线性、多项式和径向基函数核函数及其调整水平与OVO和OVA策略相结合来实施,以比较SVM在将姿势数据映射到由所研究的核所跨越的分类空间时的性能。考虑0.16秒至0.32秒的时间窗口对采集到的sEMG信号进行分段。从每个姿势的每个时间窗口提取均方根(RMS)特征并用于SVM训练。本研究专注于探究多类策略与核调整水平相结合和SVM分类性能之间的关系。使用OVA策略观察到了有前景的结果,该策略实现的二元SVM实施数量减少,平均准确率达到了97.63%。

相似文献

2
SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
BMC Bioinformatics. 2007 May 22;8 Suppl 4(Suppl 4):S2. doi: 10.1186/1471-2105-8-S4-S2.
3
Support vectors machine classification of surface electromyography for non-invasive naturally controlled hand prostheses.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:788-791. doi: 10.1109/EMBC.2016.7590819.
6
A mechatronics platform to study prosthetic hand control using EMG signals.
Australas Phys Eng Sci Med. 2016 Sep;39(3):765-71. doi: 10.1007/s13246-016-0458-6. Epub 2016 Jun 9.
7
A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.
Physiol Meas. 2015 Feb;36(2):191-206. doi: 10.1088/0967-3334/36/2/191. Epub 2015 Jan 9.
8
Vicinal support vector classifier using supervised kernel-based clustering.
Artif Intell Med. 2014 Mar;60(3):189-96. doi: 10.1016/j.artmed.2014.01.003. Epub 2014 Feb 7.
9
Enhanced Performance for Multi-Forearm Movement Decoding Using Hybrid IMU-sEMG Interface.
Front Neurorobot. 2019 Jul 3;13:43. doi: 10.3389/fnbot.2019.00043. eCollection 2019.
10

引用本文的文献

1
Evaluating the Nuclear Reaction Optimization (NRO) Algorithm for Gene Selection in Cancer Classification.
Diagnostics (Basel). 2025 Apr 3;15(7):927. doi: 10.3390/diagnostics15070927.
2
Efficiently Updating ECG-Based Biometric Authentication Based on Incremental Learning.
Sensors (Basel). 2021 Feb 24;21(5):1568. doi: 10.3390/s21051568.

本文引用的文献

1
Evaluation of the Myo armband for the classification of hand motions.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1211-1214. doi: 10.1109/ICORR.2017.8009414.
3
A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition.
IEEE Trans Biomed Circuits Syst. 2015 Oct;9(5):620-30. doi: 10.1109/TBCAS.2015.2476555. Epub 2015 Oct 26.
4
Patient specific seizure prediction system using Hilbert spectrum and Bayesian networks classifiers.
Comput Math Methods Med. 2014;2014:572082. doi: 10.1155/2014/572082. Epub 2014 Aug 27.
5
A generic and robust system for automated patient-specific classification of ECG signals.
IEEE Trans Biomed Eng. 2009 May;56(5):1415-26. doi: 10.1109/TBME.2009.2013934. Epub 2009 Feb 6.
6
A comparison of methods for multiclass support vector machines.
IEEE Trans Neural Netw. 2002;13(2):415-25. doi: 10.1109/72.991427.
7
Partial hand amputation and work.
Disabil Rehabil. 2007 Sep 15;29(17):1317-21. doi: 10.1080/09638280701320763.
8
Techniques of EMG signal analysis: detection, processing, classification and applications.
Biol Proced Online. 2006;8:11-35. doi: 10.1251/bpo115. Epub 2006 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验