FEUP-Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal.
IT-Instituto de Telecomunicações, 1049-001 Lisboa, Portugal.
Sensors (Basel). 2022 May 31;22(11):4201. doi: 10.3390/s22114201.
This article proposes a new method of identity recognition in sanitary facilities based on electrocardiography (ECG) signals. Our team previously proposed a novel approach of invisible ECG at the thighs using polymeric electrodes, leading to the creation of a proof-of-concept system integrated into a toilet seat. In this work, a biometrics pipeline was devised, which tested four different classifiers, varying the population from 2 to 17 subjects and simulating a residential environment. However, for this approach to be industrially viable, further optimization is required, particularly regarding electrode materials that are compatible with industrial processes. As such, we also explore the use of a conductive silicone material as electrodes, aiming at the industrial-scale production of a toilet seat capable of recording ECG data, without the need for body-worn devices. A desirable aspect when using such a system is matching the recorded data with the monitored user, ideally using a minimal sensor set, further reinforcing the relevance of user identification through ECG signals collected at the thighs. Our approach was evaluated against a reference device for a population of 17 healthy and pathological individuals, covering a wide age range (24-70 years). With the silicone composite, we were able to acquire signals in 100% of the sessions, with a mean heart rate deviation between a reference system and our experimental device of 2.82 ± 1.99 beats per minute (BPM). In terms of ECG waveform morphology, the best cases showed a Pearson correlation coefficient of 0.91 ± 0.06. For biometric detection, the best classifier was the Binary Convolutional Neural Network (BCNN), with an accuracy of 100% for a population of up to four individuals.
本文提出了一种基于心电图(ECG)信号的卫生设施身份识别新方法。我们的团队之前提出了一种在大腿上使用聚合物电极进行不可见 ECG 的新方法,从而创建了一个集成在马桶座上的概念验证系统。在这项工作中,设计了一个生物识别管道,该管道测试了四种不同的分类器,人群从 2 到 17 个受试者不等,并模拟了居住环境。然而,为了使这种方法在工业上可行,需要进一步优化,特别是关于与工业过程兼容的电极材料。因此,我们还探索了使用导电硅酮材料作为电极,旨在大规模生产能够记录 ECG 数据的马桶座,而无需使用佩戴在身体上的设备。当使用这样的系统时,一个理想的方面是将记录的数据与被监测的用户匹配,最好使用最小的传感器集,进一步加强通过在大腿上收集的 ECG 信号进行用户识别的相关性。我们的方法针对 17 名健康和病理个体的人群进行了评估,涵盖了广泛的年龄范围(24-70 岁)。使用硅酮复合材料,我们能够在 100%的会话中获取信号,参考系统和我们的实验设备之间的平均心率偏差为 2.82±1.99 次/分钟(BPM)。在 ECG 波形形态方面,最佳情况的皮尔逊相关系数为 0.91±0.06。对于生物识别检测,最佳分类器是二进制卷积神经网络(BCNN),对于最多四个个体的人群,准确率为 100%。