Suppr超能文献

EGFR 信号通路促进 6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶-3 活性升高,促进非小细胞肺癌细胞存活。

Increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity in response to EGFR signaling contributes to non-small cell lung cancer cell survival.

机构信息

From the James Graham Brown Cancer Center, Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202.

From the James Graham Brown Cancer Center, Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202

出版信息

J Biol Chem. 2019 Jul 5;294(27):10530-10543. doi: 10.1074/jbc.RA119.007784. Epub 2019 May 24.

Abstract

Constitutive activation of the epidermal growth factor receptor (EGFR) because of somatic mutations of the gene is commonly observed in tumors of non-small cell lung cancer (NSCLC) patients. Consequently, tyrosine kinase inhibitors (TKI) targeting the EGFR are among the most effective therapies for patients with sensitizing EGFR mutations. Clinical responses to the EGFR-targeting TKIs are evaluated through 2-[F]fluoro-2-deoxy-glucose (FDG)-PET uptake, which is decreased in patients responding favorably to therapy and is positively correlated with survival. Recent studies have reported that EGFR signaling drives glucose metabolism in NSCLC cells; however, the precise downstream effectors required for this EGFR-driven metabolic effect are largely unknown. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is an essential glycolytic regulator that is consistently overexpressed in lung cancer. Here, we found that PFKFB3 is an essential target of EGFR signaling and that PFKFB3 activation is required for glycolysis stimulation upon EGFR activation. We demonstrate that exposing NSCLC cells harboring either WT or mutated EGFR to EGF rapidly increases PFKFB3 phosphorylation, expression, and activity and that PFKFB3 inhibition markedly reduces the EGF-mediated increase in glycolysis. Furthermore, we found that prolonged NSCLC cell exposure to the TKI erlotinib drives PFKFB3 expression and that chemical PFKFB3 inhibition synergizes with erlotinib in increasing erlotinib's anti-proliferative activity in NSCLC cells. We conclude that PFKFB3 has a key role in mediating glucose metabolism and survival of NSCLC cells in response to EGFR signaling. These results support the potential clinical utility of using PFKFB3 inhibitors in combination with EGFR-TKIs to manage NSCLC.

摘要

表皮生长因子受体(EGFR)的组成性激活是由于基因的体细胞突变在非小细胞肺癌(NSCLC)患者的肿瘤中普遍观察到的。因此,针对 EGFR 的酪氨酸激酶抑制剂(TKI)是针对具有敏感 EGFR 突变的患者最有效的治疗方法之一。通过 2-[F]氟-2-脱氧葡萄糖(FDG)-PET 摄取来评估针对 EGFR 的靶向 TKI 的临床反应,在对治疗有良好反应的患者中,FDG 摄取减少,并且与生存呈正相关。最近的研究报告称,EGFR 信号驱动 NSCLC 细胞中的葡萄糖代谢;然而,这种 EGFR 驱动的代谢效应所必需的确切下游效应物在很大程度上仍是未知的。6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶(PFKFB3)是一种必需的糖酵解调节剂,在肺癌中始终过表达。在这里,我们发现 PFKFB3 是 EGFR 信号的必需靶标,并且 PFKFB3 的激活是 EGFR 激活后糖酵解刺激所必需的。我们证明,暴露于 EGF 的携带 WT 或突变 EGFR 的 NSCLC 细胞迅速增加 PFKFB3 磷酸化、表达和活性,并且 PFKFB3 抑制显著降低 EGF 介导的糖酵解增加。此外,我们发现,NSCLC 细胞长期暴露于 TKI 厄洛替尼会驱动 PFKFB3 表达,并且化学 PFKFB3 抑制与厄洛替尼协同作用,增加厄洛替尼在 NSCLC 细胞中的抗增殖活性。我们得出结论,PFKFB3 在介导 EGFR 信号对 NSCLC 细胞的葡萄糖代谢和存活中起关键作用。这些结果支持在管理 NSCLC 中使用 PFKFB3 抑制剂与 EGFR-TKI 联合的潜在临床应用。

相似文献

2
PFKFB3 Inhibition Impairs Erlotinib-Induced Autophagy in NSCLCs.
Cells. 2021 Jul 3;10(7):1679. doi: 10.3390/cells10071679.
3
Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer.
Breast Cancer Res Treat. 2016 Nov;160(1):29-40. doi: 10.1007/s10549-016-3968-8. Epub 2016 Sep 9.
6
mTORC2 contributes to the metabolic reprogramming in EGFR tyrosine-kinase inhibitor resistant cells in non-small cell lung cancer.
Cancer Lett. 2018 Oct 10;434:152-159. doi: 10.1016/j.canlet.2018.07.025. Epub 2018 Jul 21.
9
Overcoming erlotinib resistance in EGFR mutation-positive non-small cell lung cancer cells by targeting survivin.
Mol Cancer Ther. 2012 Jan;11(1):204-13. doi: 10.1158/1535-7163.MCT-11-0638. Epub 2011 Nov 10.

引用本文的文献

1
The role and therapeutic potential of glucose metabolism in multidrug resistance of cancer.
Front Cell Dev Biol. 2025 Jun 19;13:1584630. doi: 10.3389/fcell.2025.1584630. eCollection 2025.
2
Warburg effect and lactylation in cancer: mechanisms for chemoresistance.
Mol Med. 2025 Apr 22;31(1):146. doi: 10.1186/s10020-025-01205-6.
5
Emerging roles of small extracellular vesicles in metabolic reprogramming and drug resistance in cancers.
Cancer Drug Resist. 2024 Sep 27;7:38. doi: 10.20517/cdr.2024.81. eCollection 2024.
7
Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer.
Cancers (Basel). 2023 Apr 7;15(8):2195. doi: 10.3390/cancers15082195.
8
Targeting glycolysis in non-small cell lung cancer: Promises and challenges.
Front Pharmacol. 2022 Nov 30;13:1037341. doi: 10.3389/fphar.2022.1037341. eCollection 2022.

本文引用的文献

1
Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET and EGFR Targeted Therapies.
Cell Metab. 2018 Dec 4;28(6):848-865.e6. doi: 10.1016/j.cmet.2018.08.006. Epub 2018 Aug 30.
3
Allosteric regulation of epidermal growth factor (EGF) receptor ligand binding by tyrosine kinase inhibitors.
J Biol Chem. 2018 Aug 31;293(35):13401-13414. doi: 10.1074/jbc.RA118.004139. Epub 2018 Jul 11.
4
Enhanced Glycolysis Supports Cell Survival in EGFR-Mutant Lung Adenocarcinoma by Inhibiting Autophagy-Mediated EGFR Degradation.
Cancer Res. 2018 Aug 15;78(16):4482-4496. doi: 10.1158/0008-5472.CAN-18-0117. Epub 2018 Jun 26.
6
Expression of PFKFB3 and Ki67 in lung adenocarcinomas and targeting PFKFB3 as a therapeutic strategy.
Mol Cell Biochem. 2018 Aug;445(1-2):123-134. doi: 10.1007/s11010-017-3258-8. Epub 2018 Jan 11.
7
EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer.
Oncotarget. 2017 Aug 9;8(43):75712-75726. doi: 10.18632/oncotarget.20095. eCollection 2017 Sep 26.
8
Alternative drug sensitivity metrics improve preclinical cancer pharmacogenomics.
Nat Biotechnol. 2017 Jun 7;35(6):500-502. doi: 10.1038/nbt.3882.
9
Targeted Inhibition of EGFR and Glutaminase Induces Metabolic Crisis in EGFR Mutant Lung Cancer.
Cell Rep. 2017 Jan 17;18(3):601-610. doi: 10.1016/j.celrep.2016.12.061.
10
Cell type- and density-dependent effect of 1 T static magnetic field on cell proliferation.
Oncotarget. 2017 Feb 21;8(8):13126-13141. doi: 10.18632/oncotarget.14480.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验