Suppr超能文献

一个用于放射组学的具有自动肺组织分类功能的开源COVID-19 CT数据集。

An Open-Source COVID-19 CT Dataset with Automatic Lung Tissue Classification for Radiomics.

作者信息

Zaffino Paolo, Marzullo Aldo, Moccia Sara, Calimeri Francesco, De Momi Elena, Bertucci Bernardo, Arcuri Pier Paolo, Spadea Maria Francesca

机构信息

Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.

Department of Mathematics and Computer Science, University of Calabria, 87036 Rende, Italy.

出版信息

Bioengineering (Basel). 2021 Feb 16;8(2):26. doi: 10.3390/bioengineering8020026.

Abstract

The coronavirus disease 19 (COVID-19) pandemic is having a dramatic impact on society and healthcare systems. In this complex scenario, lung computerized tomography (CT) may play an important prognostic role. However, datasets released so far present limitations that hamper the development of tools for quantitative analysis. In this paper, we present an open-source lung CT dataset comprising information on 50 COVID-19-positive patients. The CT volumes are provided along with (i) an automatic threshold-based annotation obtained with a Gaussian mixture model (GMM) and (ii) a scoring provided by an expert radiologist. This score was found to significantly correlate with the presence of ground glass opacities and the consolidation found with GMM. The dataset is freely available in an ITK-based file format under the CC BY-NC 4.0 license. The code for GMM fitting is publicly available, as well. We believe that our dataset will provide a unique opportunity for researchers working in the field of medical image analysis, and hope that its release will lay the foundations for the successfully implementation of algorithms to support clinicians in facing the COVID-19 pandemic.

摘要

新型冠状病毒肺炎(COVID-19)大流行正在对社会和医疗系统产生巨大影响。在这种复杂的情况下,肺部计算机断层扫描(CT)可能发挥重要的预后作用。然而,迄今为止发布的数据集存在局限性,阻碍了定量分析工具的开发。在本文中,我们展示了一个开源肺部CT数据集,其中包含50名COVID-19阳性患者的信息。CT容积数据与(i)使用高斯混合模型(GMM)获得的基于自动阈值的标注以及(ii)由专业放射科医生提供的评分一同提供。发现该评分与磨玻璃影的存在以及GMM发现的实变显著相关。该数据集以基于ITK的文件格式在CC BY-NC 4.0许可下免费提供。用于GMM拟合的代码也已公开。我们相信,我们的数据集将为医学图像分析领域的研究人员提供一个独特的机会,并希望其发布将为成功实施支持临床医生应对COVID-19大流行的算法奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921f/7919807/b77943c2a57f/bioengineering-08-00026-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验