Department of Pharmaceutical Sciences and Medicines and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal.
Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511 Caparica, Portugal.
Int J Mol Sci. 2021 Feb 16;22(4):1948. doi: 10.3390/ijms22041948.
HIV-2 infection is frequently neglected in HIV/AIDS campaigns. However, a special emphasis must be given to HIV-2 as an untreated infection that also leads to AIDS and death, and for which the efficacy of most available drugs is limited against HIV-2. HIV envelope glycoproteins mediate binding to the receptor CD4 and co-receptors at the surface of the target cell, enabling fusion with the cell membrane and viral entry. Here, we developed and optimized a computer-assisted drug design approach of an important HIV-2 glycoprotein that allows us to explore and gain further insights at the molecular level into protein structures and interactions crucial for the inhibition of HIV-2 cell entry. The 3D structure of a key HIV-2ROD gp125 region was generated by a homology modeling campaign. To disclose the importance of the main structural features and compare them with experimental results, 3D-models of six mutants were also generated. These mutations revealed the selective impact on the behavior of the protein. Furthermore, molecular dynamics simulations were performed to optimize the models, and the dynamic behavior was tackled to account for structure flexibility and interactions network formation. Structurally, the mutations studied lead to a loss of aromatic features, which is very important for the establishment of π-π interactions and could induce a structural preference by a specific coreceptor. These new insights into the structure-function relationship of HIV-2 gp125 V3 and surrounding regions will help in the design of better models and the design of new small molecules capable to inhibit the attachment and binding of HIV with host cells.
HIV-2 感染在 HIV/AIDS 防治活动中经常被忽视。然而,必须特别重视未经治疗的 HIV-2 感染,因为它也会导致艾滋病和死亡,而且大多数现有药物对 HIV-2 的疗效有限。HIV 包膜糖蛋白介导与靶细胞表面受体 CD4 和共受体的结合,从而实现与细胞膜融合和病毒进入。在这里,我们开发并优化了一种重要的 HIV-2 糖蛋白的计算机辅助药物设计方法,使我们能够在分子水平上探索和进一步了解对抑制 HIV-2 细胞进入至关重要的蛋白质结构和相互作用。通过同源建模活动生成了关键的 HIV-2ROD gp125 区域的 3D 结构。为了揭示主要结构特征的重要性,并将其与实验结果进行比较,还生成了六个突变体的 3D 模型。这些突变揭示了对蛋白质行为的选择性影响。此外,还进行了分子动力学模拟以优化模型,并解决了动力学行为以解释结构灵活性和相互作用网络的形成。从结构上看,研究中的突变导致芳香特征的丧失,这对于建立 π-π 相互作用非常重要,并且可能诱导特定共受体的结构偏好。这些对 HIV-2 gp125 V3 及其周围区域结构-功能关系的新见解将有助于设计更好的模型和设计新的小分子,以抑制 HIV 与宿主细胞的附着和结合。