Gibby William A T, Fedorenko Olena A, Guardiani Carlo, Barabash Miraslau L, Mumby Thomas, Roberts Stephen K, Luchinsky Dmitry G, McClintock Peter V E
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.
School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
Entropy (Basel). 2021 Feb 21;23(2):249. doi: 10.3390/e23020249.
Biological ion channels are fundamental to maintaining life. In this manuscript we apply our recently developed statistical and linear response theory to investigate Na+ conduction through the prokaryotic Na+ channel NaChBac. This work is extended theoretically by the derivation of ionic conductivity and current in an electrochemical gradient, thus enabling us to compare to a range of whole-cell data sets performed on this channel. Furthermore, we also compare the magnitudes of the currents and populations at each binding site to previously published single-channel recordings and molecular dynamics simulations respectively. In doing so, we find excellent agreement between theory and data, with predicted energy barriers at each of the four binding sites of ∼4,2.9,3.6, and 4kT.
生物离子通道对于维持生命至关重要。在本论文中,我们应用最近开发的统计和线性响应理论来研究原核生物钠离子通道NaChBac中的钠离子传导。通过推导电化学梯度中的离子电导率和电流,这项工作在理论上得到了扩展,从而使我们能够与在该通道上进行的一系列全细胞数据集进行比较。此外,我们还分别将每个结合位点处的电流大小和占据数与先前发表的单通道记录和分子动力学模拟进行了比较。通过这样做,我们发现理论与数据之间具有很好的一致性,四个结合位点处预测的能垒分别约为4、2.9、3.6和4kT。