Suppr超能文献

全基因组测序在食品工业中病原体溯源的应用:稳健生物信息数据分析和可靠结果解释的关键考虑因素。

Whole Genome Sequencing Applied to Pathogen Source Tracking in Food Industry: Key Considerations for Robust Bioinformatics Data Analysis and Reliable Results Interpretation.

机构信息

Institute of Food Safety and Analytical Sciences, Nestlé Research, 1000 Lausanne 26, Switzerland.

出版信息

Genes (Basel). 2021 Feb 15;12(2):275. doi: 10.3390/genes12020275.

Abstract

Whole genome sequencing (WGS) has arisen as a powerful tool to perform pathogen source tracking in the food industry thanks to several developments in recent years. However, the cost associated to this technology and the degree of expertise required to accurately process and understand the data has limited its adoption at a wider scale. Additionally, the time needed to obtain actionable information is often seen as an impairment for the application and use of the information generated via WGS. Ongoing work towards standardization of wet lab including sequencing protocols, following guidelines from the regulatory authorities and international standardization efforts make the technology more and more accessible. However, data analysis and results interpretation guidelines are still subject to initiatives coming from distinct groups and institutions. There are multiple bioinformatics software and pipelines developed to handle such information. Nevertheless, little consensus exists on a standard way to process the data and interpret the results. Here, we want to present the constraints we face in an industrial setting and the steps we consider necessary to obtain high quality data, reproducible results and a robust interpretation of the obtained information. All of this, in a time frame allowing for data-driven actions supporting factories and their needs.

摘要

全基因组测序(WGS)近年来取得了多项进展,已成为食品行业进行病原体溯源的有力工具。然而,该技术的成本以及准确处理和理解数据所需的专业知识水平限制了其更广泛的应用。此外,获得可操作信息所需的时间通常被视为对通过 WGS 生成的信息的应用和使用的一种障碍。目前正在朝着湿实验室标准化的方向努力,包括测序协议,遵循监管机构和国际标准化工作的指导方针,使得该技术越来越容易获得。然而,数据分析和结果解释指南仍然受制于不同团体和机构提出的倡议。已经开发了多种生物信息学软件和管道来处理此类信息。然而,对于如何处理数据和解释结果,尚未达成共识。在这里,我们想展示我们在工业环境中面临的限制,以及我们认为获得高质量数据、可重复结果和对获得信息进行稳健解释所必需的步骤。所有这些都在允许数据驱动行动以支持工厂及其需求的时间框架内完成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b68b/7919020/4cd3cd10eb9b/genes-12-00275-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验