Suppr超能文献

PUP-Fuse:通过整合多种序列表示来预测蛋白泛素化位点。

PUP-Fuse: Prediction of Protein Pupylation Sites by Integrating Multiple Sequence Representations.

机构信息

Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.

Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.

出版信息

Int J Mol Sci. 2021 Feb 20;22(4):2120. doi: 10.3390/ijms22042120.

Abstract

Pupylation is a type of reversible post-translational modification of proteins, which plays a key role in the cellular function of microbial organisms. Several proteomics methods have been developed for the prediction and analysis of pupylated proteins and pupylation sites. However, the traditional experimental methods are laborious and time-consuming. Hence, computational algorithms are highly needed that can predict potential pupylation sites using sequence features. In this research, a new prediction model, PUP-Fuse, has been developed for pupylation site prediction by integrating multiple sequence representations. Meanwhile, we explored the five types of feature encoding approaches and three machine learning (ML) algorithms. In the final model, we integrated the successive ML scores using a linear regression model. The PUP-Fuse achieved a Mathew correlation value of 0.768 by a 10-fold cross-validation test. It also outperformed existing predictors in an independent test. The web server of the PUP-Fuse with curated datasets is freely available.

摘要

泛素化是一种蛋白质的可逆翻译后修饰类型,在微生物的细胞功能中起着关键作用。已经开发了几种蛋白质组学方法来预测和分析泛素化蛋白和泛素化位点。然而,传统的实验方法既费力又耗时。因此,非常需要能够使用序列特征预测潜在泛素化位点的计算算法。在这项研究中,我们通过整合多种序列表示方法,开发了一种新的泛素化位点预测模型 PUP-Fuse。同时,我们探索了五种特征编码方法和三种机器学习 (ML) 算法。在最终模型中,我们使用线性回归模型整合了连续的 ML 得分。PUP-Fuse 在 10 折交叉验证测试中达到了 0.768 的马修相关系数。它在独立测试中也优于现有的预测器。带有经过整理的数据集的 PUP-Fuse 的网络服务器可免费使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/072a/7924619/cb9fabe9e470/ijms-22-02120-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验