Suppr超能文献

利用人工智能提高 COVID-19 快速诊断测试结果解读。

Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation.

机构信息

xRapid-Group, 13100 Aix en Provence, France;

Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, 94275 Le Kremlin-Bicêtre, France;

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2019893118.

Abstract

Serological rapid diagnostic tests (RDTs) are widely used across pathologies, often providing users a simple, binary result (positive or negative) in as little as 5 to 20 min. Since the beginning of the COVID-19 pandemic, new RDTs for identifying SARS-CoV-2 have rapidly proliferated. However, these seemingly easy-to-read tests can be highly subjective, and interpretations of the visible "bands" of color that appear (or not) in a test window may vary between users, test models, and brands. We developed and evaluated the accuracy/performance of a smartphone application (xRCovid) that uses machine learning to classify SARS-CoV-2 serological RDT results and reduce reading ambiguities. Across 11 COVID-19 RDT models, the app yielded 99.3% precision compared to reading by eye. Using the app replaces the uncertainty from visual RDT interpretation with a smaller uncertainty of the image classifier, thereby increasing confidence of clinicians and laboratory staff when using RDTs, and creating opportunities for patient self-testing.

摘要

血清学快速诊断检测(RDT)在各种病症中得到广泛应用,通常可以在 5 到 20 分钟内为用户提供简单的二值结果(阳性或阴性)。自 COVID-19 大流行开始以来,用于识别 SARS-CoV-2 的新型 RDT 迅速普及。然而,这些看似易于阅读的测试可能具有高度主观性,用户、测试模型和品牌之间对测试窗口中出现(或不出现)的可见“条带”的解释可能存在差异。我们开发并评估了智能手机应用程序(xRCovid)的准确性/性能,该应用程序使用机器学习对 SARS-CoV-2 血清学 RDT 结果进行分类,并减少读取歧义。在 11 种 COVID-19 RDT 模型中,该应用程序与人工肉眼读取相比,具有 99.3%的精度。使用该应用程序可以将视觉 RDT 解释的不确定性替换为图像分类器的较小不确定性,从而提高临床医生和实验室工作人员使用 RDT 的信心,并为患者自我检测创造机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e2/7999948/e8027443fda9/pnas.2019893118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验