使用深度卷积神经网络(CNN)和风格生成对抗网络2(StyleGAN2)对新冠病毒(COVID-19)侧向流动检测图像进行分类
COVID-19 lateral flow test image classification using deep CNN and StyleGAN2.
作者信息
Pannipulath Venugopal Vishnu, Babu Saheer Lakshmi, Maktabdar Oghaz Mahdi
机构信息
School of Computing and Information Science, Anglia Ruskin University, Cambridge, United Kingdom.
出版信息
Front Artif Intell. 2024 Jan 29;6:1235204. doi: 10.3389/frai.2023.1235204. eCollection 2023.
INTRODUCTION
Artificial intelligence (AI) in healthcare can enhance clinical workflows and diagnoses, particularly in large-scale operations like COVID-19 mass testing. This study presents a deep Convolutional Neural Network (CNN) model for automated COVID-19 RATD image classification.
METHODS
To address the absence of a RATD image dataset, we crowdsourced 900 real-world images focusing on positive and negative cases. Rigorous data augmentation and StyleGAN2-ADA generated simulated images to overcome dataset limitations and class imbalances.
RESULTS
The best CNN model achieved a 93% validation accuracy. Test accuracies were 88% for simulated datasets and 82% for real datasets. Augmenting simulated images during training did not significantly improve real-world test image performance but enhanced simulated test image performance.
DISCUSSION
The findings of this study highlight the potential of the developed model in expediting COVID-19 testing processes and facilitating large-scale testing and tracking systems. The study also underscores the challenges in designing and developing such models, emphasizing the importance of addressing dataset limitations and class imbalances.
CONCLUSION
This research contributes to the deployment of large-scale testing and tracking systems, offering insights into the potential applications of AI in mitigating outbreaks similar to COVID-19. Future work could focus on refining the model and exploring its adaptability to other healthcare scenarios.
引言
医疗保健领域的人工智能(AI)可以优化临床工作流程并辅助诊断,尤其是在像新冠病毒大规模检测这样的大规模操作中。本研究提出了一种用于自动进行新冠病毒快速抗原检测诊断(RATD)图像分类的深度卷积神经网络(CNN)模型。
方法
为了解决RATD图像数据集缺失的问题,我们通过众包收集了900张聚焦于阳性和阴性病例的真实世界图像。通过严格的数据增强和StyleGAN2 - ADA生成模拟图像,以克服数据集的局限性和类别不平衡问题。
结果
最佳的CNN模型在验证集上达到了93%的准确率。模拟数据集的测试准确率为88%,真实数据集的测试准确率为82%。在训练过程中对模拟图像进行增强并没有显著提高真实世界测试图像的性能,但提升了模拟测试图像的性能。
讨论
本研究的结果突出了所开发模型在加速新冠病毒检测流程以及推动大规模检测和追踪系统方面的潜力。该研究还强调了设计和开发此类模型时所面临的挑战,强调了应对数据集局限性和类别不平衡问题的重要性。
结论
本研究有助于大规模检测和追踪系统的部署,为人工智能在缓解类似新冠疫情爆发方面的潜在应用提供了见解。未来的工作可以集中在优化模型以及探索其对其他医疗场景的适应性上。
相似文献
Front Artif Intell. 2024-1-29
Microsc Res Tech. 2021-11
本文引用的文献
Diagnostics (Basel). 2022-12-15
BMC Med Imaging. 2022-7-30
Biomed Signal Process Control. 2022-8
Ann Biomed Eng. 2022-7
Comput Biol Med. 2022-5
IEEE Access. 2020-8-14