Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Sci Rep. 2021 Mar 5;11(1):5343. doi: 10.1038/s41598-021-84841-2.
Designed or patterned structured surfaces, metasurfaces, enable the miniaturization of complex arrangements of optical elements on a plane. Most of the existing literature focuses on miniaturizing the optical detection; little attention is directed to on-chip optical excitation. In this work, we design a metasurface to create a planar integrated photonic source beam collimator for use in on-chip optofluidic sensing applications. We use an iterative inverse design approach in order to optimize the metasurface to achieve a target performance using gradient descent method. We then fabricate beam collimators and experimentally compare performance characteristics with conventional uniform binary grating-based photonic beam diffractors. The optimal design enhances the illumination power by a factor of 5. The reinforced beam is more uniform with 3 dB beam spot increased almost ~ 3 times for the same device footprint area. The design approach will be useful in on-chip applications of fluorescence imaging, Raman, and IR spectroscopy and will enable better multiplexing of light sources for high throughput biosensing.
设计或图案化的结构化表面(超表面)使在平面上对光学元件的复杂布置进行小型化成为可能。大多数现有文献都集中在小型化光学检测上;很少有注意力集中在芯片上的光学激发上。在这项工作中,我们设计了一个超表面,以创建用于片上光电流控传感应用的平面集成光子源光束准直器。我们使用迭代逆设计方法来优化超表面,以使用梯度下降法实现目标性能。然后,我们制造了光束准直器,并与传统的基于均匀二进制光栅的光子光束衍射器进行了实验性能比较。优化设计将照明功率提高了 5 倍。增强后的光束更加均匀,相同器件 footprint 面积的 3dB 光束光斑增加了近 3 倍。该设计方法将在荧光成像、拉曼和红外光谱的片上应用中非常有用,并能够为高通量生物传感更好地复用光源。