Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
MIT Nano, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Sci Rep. 2020 Nov 16;10(1):19923. doi: 10.1038/s41598-020-76225-9.
Nanophotonics is a rapidly emerging field in which complex on-chip components are required to manipulate light waves. The design space of on-chip nanophotonic components, such as an optical meta surface which uses sub-wavelength meta-atoms, is often a high dimensional one. As such conventional optimization methods fail to capture the global optimum within the feasible search space. In this manuscript, we explore a Machine Learning (ML)-based method for the inverse design of the meta-optical structure. We present a data-driven approach for modeling a grating meta-structure which performs photonic beam engineering. On-chip planar photonic waveguide-based beam engineering offers the potential to efficiently manipulate photons to create excitation beams (Gaussian, focused and collimated) for lab-on-chip applications of Infrared, Raman and fluorescence spectroscopic analysis. Inverse modeling predicts meta surface design parameters based on a desired electromagnetic field outcome. Starting with the desired diffraction beam profile, we apply an inverse model to evaluate the optimal design parameters of the meta surface. Parameters such as the repetition period (in 2D axis), height and size of scatterers are calculated using a feedforward deep neural network (DNN) and convolutional neural network (CNN) architecture. A qualitative analysis of the trained neural network, working in tandem with the forward model, predicts the diffraction profile with a correlation coefficient as high as 0.996. The developed model allows us to rapidly estimate the desired design parameters, in contrast to conventional (gradient descent based or genetic optimization) time-intensive optimization approaches.
纳米光子学是一个迅速发展的领域,需要在芯片上设计复杂的组件来操控光波。芯片上纳米光子组件的设计空间,如使用亚波长超材料的光学超表面,通常是高维的。因此,传统的优化方法无法在可行的搜索空间内捕获全局最优值。在本文中,我们探索了一种基于机器学习(ML)的方法来进行超光学结构的反向设计。我们提出了一种用于模拟执行光子束工程的光栅超结构的基于数据的方法。基于片上平面光子波导的光束工程具有高效操控光子的潜力,从而为用于红外、拉曼和荧光光谱分析的片上实验室应用创建激发光束(高斯、聚焦和准直)。反向建模根据所需的电磁场结果预测超表面设计参数。从所需的衍射光束轮廓开始,我们应用反向模型来评估超表面的最佳设计参数。重复周期(在 2D 轴上)、散射体的高度和大小等参数是使用前馈深度神经网络(DNN)和卷积神经网络(CNN)架构计算得出的。经过训练的神经网络与正向模型一起进行定性分析,可以预测衍射轮廓,相关系数高达 0.996。所开发的模型允许我们快速估计所需的设计参数,与传统的(基于梯度下降或遗传优化的)耗时优化方法形成对比。