Suppr超能文献

功能基因组分析突出了在少突胶质前体细胞中 Gpr17 调节的细胞过程的转变以及衰老小鼠大脑中髓鞘失调的潜在机制。

Functional genomic analyses highlight a shift in Gpr17-regulated cellular processes in oligodendrocyte progenitor cells and underlying myelin dysregulation in the aged mouse cerebrum.

机构信息

School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK.

Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy.

出版信息

Aging Cell. 2021 Apr;20(4):e13335. doi: 10.1111/acel.13335. Epub 2021 Mar 5.

Abstract

Brain ageing is characterised by a decline in neuronal function and associated cognitive deficits. There is increasing evidence that myelin disruption is an important factor that contributes to the age-related loss of brain plasticity and repair responses. In the brain, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Currently, a leading hypothesis points to ageing as a major reason for the ultimate breakdown of remyelination in Multiple Sclerosis (MS). However, an incomplete understanding of the cellular and molecular processes underlying brain ageing hinders the development of regenerative strategies. Here, our combined systems biology and neurobiological approach demonstrate that oligodendroglial and myelin genes are amongst the most altered in the ageing mouse cerebrum. This was underscored by the identification of causal links between signalling pathways and their downstream transcriptional networks that define oligodendroglial disruption in ageing. The results highlighted that the G-protein coupled receptor Gpr17 is central to the disruption of OPCs in ageing and this was confirmed by genetic fate-mapping and cellular analyses. Finally, we used systems biology strategies to identify therapeutic agents that rejuvenate OPCs and restore myelination in age-related neuropathological contexts.

摘要

大脑老化的特征是神经元功能下降和相关认知缺陷。越来越多的证据表明,髓鞘破坏是导致大脑可塑性和修复反应随年龄增长而丧失的一个重要因素。在大脑中,髓鞘由少突胶质细胞产生,这些细胞由少突胶质前体细胞(OPCs)在整个生命过程中产生。目前,一个主要假设指出,衰老是多发性硬化症(MS)中髓鞘再生最终失败的主要原因。然而,对大脑老化相关的细胞和分子过程的理解不完整,阻碍了再生策略的发展。在这里,我们结合系统生物学和神经生物学的方法,证明了少突胶质细胞和髓鞘基因是衰老小鼠大脑中变化最大的基因之一。这一点通过鉴定信号通路与其下游转录网络之间的因果关系得到了强调,这些网络定义了衰老过程中少突胶质细胞的破坏。结果表明,G 蛋白偶联受体 Gpr17 是衰老过程中 OPC 破坏的核心,这一结果通过遗传命运图谱和细胞分析得到了证实。最后,我们使用系统生物学策略来识别能够使 OPC 年轻化并在与年龄相关的神经病理学背景下恢复髓鞘形成的治疗剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9027/8045941/e218d059bcbc/ACEL-20-e13335-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验