Suppr超能文献

保持大脑连接:嘌呤信号在调节少突胶质前体细胞代谢中的作用

Keeping the ageing brain wired: a role for purine signalling in regulating cellular metabolism in oligodendrocyte progenitors.

机构信息

School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK.

Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy.

出版信息

Pflugers Arch. 2021 May;473(5):775-783. doi: 10.1007/s00424-021-02544-z. Epub 2021 Mar 13.

Abstract

White matter (WM) is a highly prominent feature in the human cerebrum and is comprised of bundles of myelinated axons that form the connectome of the brain. Myelin is formed by oligodendrocytes and is essential for rapid neuronal electrical communication that underlies the massive computing power of the human brain. Oligodendrocytes are generated throughout life by oligodendrocyte precursor cells (OPCs), which are identified by expression of the chondroitin sulphate proteoglycan NG2 (Cspg4), and are often termed NG2-glia. Adult NG2+ OPCs are slowly proliferating cells that have the stem cell-like property of self-renewal and differentiation into a pool of 'late OPCs' or 'differentiation committed' OPCs(COPs) identified by specific expression of the G-protein-coupled receptor GPR17, which are capable of differentiation into myelinating oligodendrocytes. In the adult brain, these reservoirs of OPCs and COPs ensure rapid myelination of new neuronal connections formed in response to neuronal signalling, which underpins learning and cognitive function. However, there is an age-related decline in myelination that is associated with a loss of neuronal function and cognitive decline. The underlying causes of myelin loss in ageing are manifold, but a key factor is the decay in OPC 'stemness' and a decline in their replenishment of COPs, which results in the ultimate failure of myelin regeneration. These changes in ageing OPCs are underpinned by dysregulation of neuronal signalling and OPC metabolic function. Here, we highlight the role of purine signalling in regulating OPC self-renewal and the potential importance of GPR17 and the P2X7 receptor subtype in age-related changes in OPC metabolism. Moreover, age is the main factor in the failure of myelination in chronic multiple sclerosis and myelin loss in Alzheimer's disease, hence understanding the importance of purine signalling in OPC regeneration and myelination is critical for developing new strategies for promoting repair in age-dependent neuropathology.

摘要

脑白质(WM)是人类大脑中一个非常显著的特征,它由大量形成大脑连接组的髓鞘化轴突组成。髓鞘由少突胶质细胞形成,对于支持人类大脑巨大计算能力的快速神经元电通信至关重要。少突胶质细胞在一生中由少突胶质前体细胞(OPC)产生,OPC 通过表达硫酸软骨素蛋白聚糖 NG2(Cspg4)来识别,通常被称为 NG2 胶质细胞。成年 NG2+OPC 是增殖缓慢的细胞,具有自我更新和分化为“晚期 OPC”或“分化定向”OPC(COPs)的干细胞样特性,其通过 G 蛋白偶联受体 GPR17 的特异性表达来识别,后者能够分化为产生髓鞘的少突胶质细胞。在成年大脑中,这些 OPC 和 COPs 储备确保了新神经元连接形成后快速髓鞘化,这为学习和认知功能提供了基础。然而,髓鞘化会随着年龄的增长而逐渐减少,这与神经元功能丧失和认知能力下降有关。衰老导致髓鞘丢失的原因有很多,但一个关键因素是 OPC“干性”的衰退和 COPs 补充的减少,这导致最终髓鞘再生失败。衰老 OPC 中这些变化的基础是神经元信号转导和 OPC 代谢功能的失调。在这里,我们强调嘌呤信号在调节 OPC 自我更新中的作用,以及 GPR17 和 P2X7 受体亚型在 OPC 代谢衰老相关变化中的潜在重要性。此外,年龄是慢性多发性硬化症中髓鞘化失败和阿尔茨海默病中髓鞘丢失的主要因素,因此了解嘌呤信号在 OPC 再生和髓鞘形成中的重要性对于开发促进与年龄相关的神经病理学修复的新策略至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/607a/8076121/a70a36b1c4a2/424_2021_2544_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验