Suppr超能文献

三维生物工程神经组织中的学习和突触可塑性。

Learning and synaptic plasticity in 3D bioengineered neural tissues.

机构信息

Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, United States.

Department of Biomedical Engineering, Tufts University, United States.

出版信息

Neurosci Lett. 2021 Apr 17;750:135799. doi: 10.1016/j.neulet.2021.135799. Epub 2021 Mar 3.

Abstract

Though neuroscientists have historically relied upon measurement of established nervous systems, contemporary advances in bioengineering have made it possible to design and build artificial neural tissues with which to investigate normative and diseased states [1-5] however, their potential to display features of learning and memory remains unexplored. Here, we demonstrate response patterns characteristic of habituation, a form of non-associative learning, in 3D bioengineered neural tissues exposed to repetitive injections of current to elicit evoked-potentials (EPs). A return of the evoked response following rest indicated learning was transient and partially reversible. Applying patterned current as massed or distributed pulse trains induced differential expression of immediate early genes (IEG) that are known to facilitate synaptic plasticity and participate in memory formation [6,7]. Our findings represent the first demonstration of a learning response in a bioengineered neural tissue in vitro.

摘要

尽管神经科学家在历史上一直依赖于已建立的神经系统的测量,但当代生物工程的进步使得设计和构建人工神经网络组织成为可能,以便研究正常和患病状态[1-5]。然而,它们在显示学习和记忆特征方面的潜力仍未被探索。在这里,我们在暴露于重复电流注射以引发诱发电位(EP)的 3D 生物工程神经组织中展示了习惯化的特征反应模式,习惯化是一种非联想学习形式。在休息后,诱发反应的恢复表明学习是短暂的和部分可逆的。施加模式电流作为密集或分布式脉冲序列诱导了已知促进突触可塑性和参与记忆形成的即时早期基因(IEG)的差异表达[6,7]。我们的发现代表了在体外生物工程神经组织中首次展示学习反应。

相似文献

1
Learning and synaptic plasticity in 3D bioengineered neural tissues.三维生物工程神经组织中的学习和突触可塑性。
Neurosci Lett. 2021 Apr 17;750:135799. doi: 10.1016/j.neulet.2021.135799. Epub 2021 Mar 3.
6
Dynamics of learning-induced cellular modifications in the cortex.学习诱导的皮层细胞变化的动力学
Biol Cybern. 2005 Jun;92(6):360-6. doi: 10.1007/s00422-005-0564-0. Epub 2005 May 18.
7
Network plasticity in cortical assemblies.皮层神经集合中的网络可塑性
Eur J Neurosci. 2008 Jul;28(1):221-37. doi: 10.1111/j.1460-9568.2008.06259.x.
8
Bioengineered functional brain-like cortical tissue.生物工程化功能性类脑皮质组织。
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13811-6. doi: 10.1073/pnas.1324214111. Epub 2014 Aug 11.
9
In vitro bioengineered model of cortical brain tissue.皮质脑组织的体外生物工程模型
Nat Protoc. 2015 Sep;10(9):1362-73. doi: 10.1038/nprot.2015.091. Epub 2015 Aug 13.
10
LTP and spatial learning--where to next?长时程增强效应与空间学习——下一步何去何从?
Hippocampus. 1997;7(1):95-110. doi: 10.1002/(SICI)1098-1063(1997)7:1<95::AID-HIPO10>3.0.CO;2-D.

引用本文的文献

1
Functional bioengineered models of the central nervous system.中枢神经系统的功能性生物工程模型。
Nat Rev Bioeng. 2023;1(4):252-270. doi: 10.1038/s44222-023-00027-7. Epub 2023 Feb 7.

本文引用的文献

1
Tutorials for Electrophysiological Recordings in Neuronal Tissue Engineering.神经组织工程中电生理记录教程。
ACS Biomater Sci Eng. 2017 Oct 9;3(10):2235-2246. doi: 10.1021/acsbiomaterials.7b00318. Epub 2017 Aug 28.
6
On Having No Head: Cognition throughout Biological Systems.《论无头:生物系统中的认知》
Front Psychol. 2016 Jun 21;7:902. doi: 10.3389/fpsyg.2016.00902. eCollection 2016.
7
The fear-avoidance model of pain.疼痛的恐惧回避模型。
Pain. 2016 Aug;157(8):1588-1589. doi: 10.1097/j.pain.0000000000000574.
9
In vitro bioengineered model of cortical brain tissue.皮质脑组织的体外生物工程模型
Nat Protoc. 2015 Sep;10(9):1362-73. doi: 10.1038/nprot.2015.091. Epub 2015 Aug 13.
10
Bioengineered functional brain-like cortical tissue.生物工程化功能性类脑皮质组织。
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13811-6. doi: 10.1073/pnas.1324214111. Epub 2014 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验