Rouleau Nicolas, Murugan Nirosha J, Kaplan David L
Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada.
Department of Biomedical Engineering, Tufts University, Medford, MA USA.
Nat Rev Bioeng. 2023;1(4):252-270. doi: 10.1038/s44222-023-00027-7. Epub 2023 Feb 7.
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
中枢神经系统(CNS)的功能复杂性在生物有机体中是无与伦比的。其嵌套的细胞、回路和网络编码记忆、驱动身体并产生体验。可以对神经组织进行工程化处理,以组装能够概括中枢神经系统基本特征的模型系统,从而研究神经发育、描绘病理生理学、促进再生并加速药物发现。在本综述中,我们讨论了中枢神经系统的基本结构-功能关系,并研究了基于细胞生物学和基于工程学的中枢神经系统模型在材料和设计方面的考虑因素,包括组成、规模、复杂性和成熟度。我们重点介绍了能够模拟大脑皮层、海马体、脊髓、神经-机器接口及其他区域功能的特定区域中枢神经系统模型,并探讨了中枢神经系统模型的一系列应用,包括基础研究和临床研究。我们最后展望了中枢神经系统模型的未来可能性,强调了仍有待克服的工程挑战。