Suppr超能文献

一种机器学习方法预测 ICU 入院时的医疗保健相关感染:SPIN-UTI 项目的研究结果。

A machine learning approach to predict healthcare-associated infections at intensive care unit admission: findings from the SPIN-UTI project.

机构信息

Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy; GISIO-SItI (Italian Study Group of Hospital Hygiene), Italian Society of Hygiene, Preventive Medicine and Public Health, Italy.

Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy.

出版信息

J Hosp Infect. 2021 Jun;112:77-86. doi: 10.1016/j.jhin.2021.02.025. Epub 2021 Mar 5.

Abstract

BACKGROUND

Identifying patients at higher risk of healthcare-associated infections (HAIs) in intensive care units (ICUs) represents a major challenge for public health. Machine learning could improve patient risk stratification and lead to targeted infection prevention and control interventions.

AIM

To evaluate the performance of the Simplified Acute Physiology Score (SAPS) II for HAI risk prediction in ICUs, using both traditional statistical and machine learning approaches.

METHODS

Data for 7827 patients from the 'Italian Nosocomial Infections Surveillance in Intensive Care Units' project were used in this study. The Support Vector Machines (SVM) algorithm was applied to classify patients according to sex, patient origin, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II at admission, presence of invasive devices, trauma, impaired immunity, and antibiotic therapy in 48 h preceding ICU admission.

FINDINGS

The performance of SAPS II for predicting HAI risk provides a receiver operating characteristic curve with an area under the curve of 0.612 (P<0.001) and accuracy of 56%. Considering SAPS II along with other characteristics at ICU admission, the SVM classifier was found to have accuracy of 88% and an AUC of 0.90 (P<0.001) for the test set. The predictive ability was lower when considering the same SVM model but with the SAPS II variable removed (accuracy 78%, AUC 0.66).

CONCLUSIONS

This study suggested that the SVM model is a useful tool for early prediction of patients at higher risk of HAIs at ICU admission.

摘要

背景

在重症监护病房(ICU)中识别具有更高医疗保健相关性感染(HAI)风险的患者对公共卫生而言是一项重大挑战。机器学习可改善患者风险分层,并促使采取针对性的感染预防和控制干预措施。

目的

使用传统统计学和机器学习方法评估简化急性生理学评分(SAPS) II 预测 ICU 中 HAI 风险的性能。

方法

本研究使用了“意大利重症监护病房医院感染监测”项目中 7827 名患者的数据。应用支持向量机(SVM)算法根据性别、患者来源、急性冠状动脉疾病的非手术治疗、手术干预、入院时 SAPS II、侵袭性设备、创伤、免疫受损以及入院前 48 小时内使用抗生素治疗对患者进行分类。

结果

SAPS II 预测 HAI 风险的性能提供了一个接收者操作特征曲线,曲线下面积为 0.612(P<0.001),准确性为 56%。在考虑入院时 SAPS II 及其他特征的情况下,SVM 分类器对测试集的准确性为 88%,AUC 为 0.90(P<0.001)。当考虑相同的 SVM 模型但去除 SAPS II 变量时,预测能力较低(准确性为 78%,AUC 为 0.66)。

结论

本研究表明,SVM 模型是一种用于预测 ICU 入院时具有更高 HAI 风险患者的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验