Suppr超能文献

彼得霍夫遗传收集品系的两个实验室酵母菌株的染色体水平基因组组装和结构变异分析。

Chromosome-level genome assembly and structural variant analysis of two laboratory yeast strains from the Peterhof Genetic Collection lineage.

机构信息

Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.

Bioinformatics Institute, St. Petersburg 197342, Russia.

出版信息

G3 (Bethesda). 2021 Apr 15;11(4). doi: 10.1093/g3journal/jkab029.

Abstract

Thousands of yeast genomes have been sequenced with both traditional and long-read technologies, and multiple observations about modes of genome evolution for both wild and laboratory strains have been drawn from these sequences. In our study, we applied Oxford Nanopore and Illumina technologies to assemble complete genomes of two widely used members of a distinct laboratory yeast lineage, the Peterhof Genetic Collection (PGC), and investigate the structural features of these genomes including transposable element content, copy number alterations, and structural rearrangements. We identified numerous notable structural differences between genomes of PGC strains and the reference S288C strain. We discovered a substantial enrichment of mid-length insertions and deletions within repetitive coding sequences, such as in the SCH9 gene or the NUP100 gene, with possible impact of these variants on protein amyloidogenicity. High contiguity of the final assemblies allowed us to trace back the history of reciprocal unbalanced translocations between chromosomes I, VIII, IX, XI, and XVI of the PGC strains. We show that formation of hybrid alleles of the FLO genes during such chromosomal rearrangements is likely responsible for the lack of invasive growth of yeast strains. Taken together, our results highlight important features of laboratory yeast strain evolution using the power of long-read sequencing.

摘要

已经使用传统和长读长技术对数千个酵母基因组进行了测序,并且从这些序列中得出了关于野生和实验室菌株的基因组进化模式的多个观察结果。在我们的研究中,我们应用 Oxford Nanopore 和 Illumina 技术来组装两个具有明显实验室酵母谱系的广泛使用成员的完整基因组,即 Peterhof Genetic Collection (PGC),并研究这些基因组的结构特征,包括转座元件含量、拷贝数改变和结构重排。我们发现 PGC 菌株和参考 S288C 菌株的基因组之间存在许多显著的结构差异。我们发现重复编码序列(如 SCH9 基因或 NUP100 基因)内存在大量中长插入缺失,这些变体可能对蛋白质的淀粉样变性有影响。最终组装的高连续性使我们能够追溯 PGC 菌株之间染色体 I、VIII、IX、XI 和 XVI 之间的相互不平衡易位的历史。我们表明,在这种染色体重排过程中 FLO 基因的杂种等位基因的形成可能是导致酵母菌株缺乏侵袭性生长的原因。总之,我们的结果突出了使用长读长测序技术的实验室酵母菌株进化的重要特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dff/8759820/07499419928e/jkab029f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验