Suppr超能文献

基于非局部变分框架的超声图像去噪与增强

Despeckling and enhancement of ultrasound images using non-local variational framework.

作者信息

Febin I P, Jidesh P

机构信息

Department of Mathematical and computational sciences, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025 India.

出版信息

Vis Comput. 2022;38(4):1413-1426. doi: 10.1007/s00371-021-02076-8. Epub 2021 Feb 27.

Abstract

Speckles are introduced in the ultrasound data due to constructive and destructive interference of the probing signals that are used for capturing the characteristics of the tissue being imaged. There are a plethora of models discussed in the literature to improve the contrast and resolution of the ultrasound images by despeckling them. There is a class of models that assumes that the noise is multiplicative in its original form, and transforming the model to a log domain makes it an additive one. Nevertheless, such a transformation duly oversimplifies the scenario and does not capture the inherent properties of the data-correlated nature of speckles. Therefore, it results in poor reconstruction. This problem is addressed to a considerable extent in the subsequent works by adopting various models to address the data-correlated nature of the noise and its distributions. This work introduces a weberized non-local total bounded variational model based on the noise distribution built on the Retinex theory. This perceptually inspired model apparently restores and improves the contrast of the images without compromising much on the details inherently present in the data. The numerical implementation of the model is carried out using the Bregman formulation to improve the convergence rate and reduce the parameter sensitivity. The experimental results are highlighted and compared to demonstrate the efficiency of the model.

摘要

由于用于捕捉被成像组织特征的探测信号的相长干涉和相消干涉,超声数据中会出现斑点。文献中讨论了大量通过去斑来提高超声图像对比度和分辨率的模型。有一类模型假设噪声在其原始形式下是乘性的,将模型转换到对数域会使其变为加性的。然而,这种转换过度简化了情况,没有捕捉到斑点数据相关性质的固有特性。因此,它导致重建效果不佳。在随后的工作中,通过采用各种模型来处理噪声的数据相关性质及其分布,这个问题在很大程度上得到了解决。这项工作基于Retinex理论构建的噪声分布,引入了一种韦伯化的非局部全有界变分模型。这个受感知启发的模型显然恢复并提高了图像的对比度,同时在不损害数据中固有细节的情况下。该模型的数值实现使用Bregman公式进行,以提高收敛速度并降低参数敏感性。突出显示并比较了实验结果,以证明该模型的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d74b/7912973/cec1c821b3ca/371_2021_2076_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验