Li Ruixin, Liang Yan, Liu Xiaojian, Wang Bingbing, Huang Wenxin, Cai Zhaoxin, Ye Yaoguang, Qiu Lina, Pan Jiahui
School of Software, South China Normal University, Guangzhou, China.
Pazhou Lab, Guangzhou, China.
Front Hum Neurosci. 2021 Feb 19;15:621493. doi: 10.3389/fnhum.2021.621493. eCollection 2021.
Emotion recognition plays an important role in intelligent human-computer interaction, but the related research still faces the problems of low accuracy and subject dependence. In this paper, an open-source software toolbox called MindLink-Eumpy is developed to recognize emotions by integrating electroencephalogram (EEG) and facial expression information. MindLink-Eumpy first applies a series of tools to automatically obtain physiological data from subjects and then analyzes the obtained facial expression data and EEG data, respectively, and finally fuses the two different signals at a decision level. In the detection of facial expressions, the algorithm used by MindLink-Eumpy is a multitask convolutional neural network (CNN) based on transfer learning technique. In the detection of EEG, MindLink-Eumpy provides two algorithms, including a subject-dependent model based on support vector machine (SVM) and a subject-independent model based on long short-term memory network (LSTM). In the decision-level fusion, weight enumerator and AdaBoost technique are applied to combine the predictions of SVM and CNN. We conducted two offline experiments on the Database for Emotion Analysis Using Physiological Signals (DEAP) dataset and the Multimodal Database for Affect Recognition and Implicit Tagging (MAHNOB-HCI) dataset, respectively, and conducted an online experiment on 15 healthy subjects. The results show that multimodal methods outperform single-modal methods in both offline and online experiments. In the subject-dependent condition, the multimodal method achieved an accuracy of 71.00% in the valence dimension and an accuracy of 72.14% in the arousal dimension. In the subject-independent condition, the LSTM-based method achieved an accuracy of 78.56% in the valence dimension and an accuracy of 77.22% in the arousal dimension. The feasibility and efficiency of MindLink-Eumpy for emotion recognition is thus demonstrated.
情绪识别在智能人机交互中起着重要作用,但相关研究仍面临准确率低和受主体依赖性影响的问题。本文开发了一个名为MindLink-Eumpy的开源软件工具箱,通过整合脑电图(EEG)和面部表情信息来识别情绪。MindLink-Eumpy首先应用一系列工具自动从受试者获取生理数据,然后分别分析获取的面部表情数据和EEG数据,最后在决策层面融合这两种不同信号。在面部表情检测中,MindLink-Eumpy使用的算法是基于迁移学习技术的多任务卷积神经网络(CNN)。在EEG检测中,MindLink-Eumpy提供了两种算法,包括基于支持向量机(SVM)的依赖主体模型和基于长短期记忆网络(LSTM)的独立于主体的模型。在决策层面融合中,应用权重枚举器和AdaBoost技术来结合SVM和CNN的预测结果。我们分别在用于生理信号情感分析的数据库(DEAP)数据集和用于情感识别与隐式标记的多模态数据库(MAHNOB-HCI)数据集上进行了两项离线实验,并对15名健康受试者进行了一项在线实验。结果表明,多模态方法在离线和在线实验中均优于单模态方法。在依赖主体的条件下,多模态方法在效价维度上的准确率为71.00%,在唤醒维度上的准确率为72.14%。在独立于主体的条件下,基于LSTM的方法在效价维度上的准确率为78.56%,在唤醒维度上的准确率为77.22%。从而证明了MindLink-Eumpy用于情绪识别的可行性和有效性。