Geisler Stefanie M, Benedetti Ariane, Schöpf Clemens L, Schwarzer Christoph, Stefanova Nadia, Schwartz Arnold, Obermair Gerald J
Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
Front Synaptic Neurosci. 2021 Feb 19;13:634412. doi: 10.3389/fnsyn.2021.634412. eCollection 2021.
Auxiliary αδ subunits of voltage-gated calcium channels modulate channel trafficking, current properties, and synapse formation. Three of the four isoforms (αδ-1, αδ-2, and αδ-3) are abundantly expressed in the brain; however, of the available knockout models, only αδ-2 knockout or mutant mice display an obvious abnormal neurological phenotype. Thus, we hypothesize that the neuronal αδ isoforms may have partially specific as well as redundant functions. To address this, we generated three distinct αδ double knockout mouse models by crossbreeding single knockout (αδ-1 and -3) or mutant (αδ-2/ducky) mice. Here, we provide a first phenotypic description and brain structure analysis. We found that genotypic distribution of neonatal litters in distinct αδ-1/-2, αδ-1/-3, and αδ-2/-3 breeding combinations did not conform to Mendel's law, suggesting premature lethality of single and double knockout mice. Notably, high occurrences of infant mortality correlated with the absence of specific αδ isoforms (αΔ-2 > αδ-1 > αδ-3), and was particularly observed in cages with behaviorally abnormal parenting animals of αδ-2/-3 cross-breedings. Juvenile αδ-1/-2 and αδ-2/-3 double knockout mice displayed a waddling gate similar to ducky mice. However, in contrast to ducky and αδ-1/-3 double knockout animals, αδ-1/-2 and αδ-2/-3 double knockout mice showed a more severe disease progression and highly impaired development. The observed phenotypes within the individual mouse lines may be linked to differences in the volume of specific brain regions. Reduced cortical volume in ducky mice, for example, was associated with a progressively decreased space between neurons, suggesting a reduction of total synaptic connections. Taken together, our findings show that αδ subunits differentially regulate premature survival, postnatal growth, brain development, and behavior, suggesting specific neuronal functions in health and disease.
电压门控钙通道的辅助αδ亚基可调节通道运输、电流特性和突触形成。四种亚型中的三种(αδ-1、αδ-2和αδ-3)在大脑中大量表达;然而,在现有的基因敲除模型中,只有αδ-2基因敲除或突变小鼠表现出明显的异常神经表型。因此,我们推测神经元αδ亚型可能具有部分特异性以及冗余功能。为了解决这个问题,我们通过将单基因敲除(αδ-1和-3)或突变(αδ-2/ducky)小鼠杂交,生成了三种不同的αδ双基因敲除小鼠模型。在此,我们提供了首次表型描述和脑结构分析。我们发现,在不同的αδ-1/-2、αδ-1/-3和αδ-2/-3育种组合中,新生仔鼠的基因型分布不符合孟德尔定律,这表明单基因和双基因敲除小鼠存在过早致死现象。值得注意的是,高婴儿死亡率与特定αδ亚型的缺失相关(αΔ-2 > αδ-1 > αδ-3),尤其在αδ-2/-3杂交的行为异常亲代动物的笼子中观察到。幼年αδ-1/-2和αδ-2/-3双基因敲除小鼠表现出类似于ducky小鼠的摇摆步态。然而,与ducky和αδ-1/-3双基因敲除动物不同,αδ-1/-2和αδ-2/-3双基因敲除小鼠表现出更严重的疾病进展和高度受损的发育。在各个小鼠品系中观察到的表型可能与特定脑区体积的差异有关。例如,ducky小鼠的皮质体积减小与神经元之间空间的逐渐减小有关,这表明总突触连接减少。综上所述,我们的研究结果表明,αδ亚基差异调节过早存活、出生后生长、脑发育和行为,提示其在健康和疾病中的特定神经元功能。