Suppr超能文献

阿尔茨海默病中的线粒体功能障碍与氧化应激

Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease.

作者信息

Misrani Afzal, Tabassum Sidra, Yang Li

机构信息

School of Life Sciences, Guangzhou University, Guangzhou, China.

出版信息

Front Aging Neurosci. 2021 Feb 18;13:617588. doi: 10.3389/fnagi.2021.617588. eCollection 2021.

Abstract

Mitochondria play a pivotal role in bioenergetics and respiratory functions, which are essential for the numerous biochemical processes underpinning cell viability. Mitochondrial morphology changes rapidly in response to external insults and changes in metabolic status via fission and fusion processes (so-called mitochondrial dynamics) that maintain mitochondrial quality and homeostasis. Damaged mitochondria are removed by a process known as mitophagy, which involves their degradation by a specific autophagosomal pathway. Over the last few years, remarkable efforts have been made to investigate the impact on the pathogenesis of Alzheimer's disease (AD) of various forms of mitochondrial dysfunction, such as excessive reactive oxygen species (ROS) production, mitochondrial Ca dyshomeostasis, loss of ATP, and defects in mitochondrial dynamics and transport, and mitophagy. Recent research suggests that restoration of mitochondrial function by physical exercise, an antioxidant diet, or therapeutic approaches can delay the onset and slow the progression of AD. In this review, we focus on recent progress that highlights the crucial role of alterations in mitochondrial function and oxidative stress in the pathogenesis of AD, emphasizing a framework of existing and potential therapeutic approaches.

摘要

线粒体在生物能量学和呼吸功能中发挥着关键作用,而生物能量学和呼吸功能对于维持细胞生存能力的众多生化过程至关重要。线粒体形态会通过裂变和融合过程(即所谓的线粒体动力学)迅速响应外部损伤和代谢状态变化,这些过程维持着线粒体的质量和稳态。受损线粒体通过一种称为线粒体自噬的过程被清除,该过程涉及通过特定的自噬体途径对其进行降解。在过去几年中,人们付出了巨大努力来研究各种形式的线粒体功能障碍对阿尔茨海默病(AD)发病机制的影响,如活性氧(ROS)过度产生、线粒体钙稳态失调、ATP丧失以及线粒体动力学和运输缺陷以及线粒体自噬。最近的研究表明,通过体育锻炼、抗氧化饮食或治疗方法恢复线粒体功能可以延缓AD的发病并减缓其进展。在这篇综述中,我们关注的是最近的进展,这些进展突出了线粒体功能改变和氧化应激在AD发病机制中的关键作用,强调了现有和潜在治疗方法的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3378/7930231/9ebadf590d5c/fnagi-13-617588-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验