Suppr超能文献

饮食接触食品烹饪和加工过程中产生的化学物质导致的肠道微生物群改变。数据科学在风险预测中的应用。

Intestinal microbiota alterations by dietary exposure to chemicals from food cooking and processing. Application of data science for risk prediction.

作者信息

Ruiz-Saavedra Sergio, García-González Herminio, Arboleya Silvia, Salazar Nuria, Emilio Labra-Gayo José, Díaz Irene, Gueimonde Miguel, González Sonia, de Los Reyes-Gavilán Clara G

机构信息

Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain.

Department of Functional Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain.

出版信息

Comput Struct Biotechnol J. 2021 Jan 29;19:1081-1091. doi: 10.1016/j.csbj.2021.01.037. eCollection 2021.

Abstract

Diet is one of the main sources of exposure to toxic chemicals with carcinogenic potential, some of which are generated during food processing, depending on the type of food (primarily meat, fish, bread and potatoes), cooking methods and temperature. Although demonstrated in animal models at high doses, an unequivocal link between dietary exposure to these compounds with disease has not been proven in humans. A major difficulty in assessing the actual intake of these toxic compounds is the lack of standardised and harmonised protocols for collecting and analysing dietary information. The intestinal microbiota (IM) has a great influence on health and is altered in some diseases such as colorectal cancer (CRC). Diet influences the composition and activity of the IM, and the net exposure to genotoxicity of potential dietary carcinogens in the gut depends on the interaction among these compounds, IM and diet. This review analyses critically the difficulties and challenges in the study of interactions among these three actors on the onset of CRC. Machine Learning (ML) of data obtained in subclinical and precancerous stages would help to establish risk thresholds for the intake of toxic compounds generated during food processing as related to diet and IM profiles, whereas Semantic Web could improve data accessibility and usability from different studies, as well as helping to elucidate novel interactions among those chemicals, IM and diet.

摘要

饮食是接触具有致癌潜力的有毒化学物质的主要来源之一,其中一些是在食品加工过程中产生的,这取决于食物的类型(主要是肉类、鱼类、面包和土豆)、烹饪方法和温度。尽管在高剂量动物模型中得到了证实,但饮食接触这些化合物与疾病之间的明确联系在人类中尚未得到证实。评估这些有毒化合物实际摄入量的一个主要困难是缺乏收集和分析饮食信息的标准化和统一方案。肠道微生物群(IM)对健康有很大影响,并且在某些疾病如结直肠癌(CRC)中会发生改变。饮食会影响IM的组成和活性,肠道中潜在饮食致癌物的基因毒性净暴露取决于这些化合物、IM和饮食之间的相互作用。本综述批判性地分析了在研究这三个因素在结直肠癌发病过程中的相互作用时所面临的困难和挑战。对亚临床和癌前阶段获得的数据进行机器学习(ML)将有助于确定与饮食和IM谱相关的食品加工过程中产生的有毒化合物摄入量的风险阈值,而语义网可以提高不同研究数据的可访问性和可用性,并有助于阐明这些化学物质、IM和饮食之间的新相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869a/7892627/44ef7b8fdb21/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验