Suppr超能文献

基于深度协同过滤的 miRNA-疾病关联预测

Prediction of miRNA-Disease Association Using Deep Collaborative Filtering.

机构信息

School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China.

School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China.

出版信息

Biomed Res Int. 2021 Feb 23;2021:6652948. doi: 10.1155/2021/6652948. eCollection 2021.

Abstract

The existing studies have shown that miRNAs are related to human diseases by regulating gene expression. Identifying miRNA association with diseases will contribute to diagnosis, treatment, and prognosis of diseases. The experimental identification of miRNA-disease associations is time-consuming, tremendously expensive, and of high-failure rate. In recent years, many researchers predicted potential associations between miRNAs and diseases by computational approaches. In this paper, we proposed a novel method using deep collaborative filtering called DCFMDA to predict miRNA-disease potential associations. To improve prediction performance, we integrated neural network matrix factorization (NNMF) and multilayer perceptron (MLP) in a deep collaborative filtering framework. We utilized known miRNA-disease associations to capture miRNA-disease interaction features by NNMF and utilized miRNA similarity and disease similarity to extract miRNA feature vector and disease feature vector, respectively, by MLP. At last, we merged outputs of the NNMF and MLP to obtain the prediction matrix. The experimental results indicate that compared with other existing computational methods, our method can achieve the AUC of 0.9466 based on 10-fold cross-validation. In addition, case studies show that the DCFMDA can effectively predict candidate miRNAs for breast neoplasms, colon neoplasms, kidney neoplasms, leukemia, and lymphoma.

摘要

现有研究表明,miRNA 通过调控基因表达与人类疾病有关。鉴定 miRNA 与疾病的关联有助于疾病的诊断、治疗和预后。miRNA 与疾病关联的实验鉴定既耗时、费用高昂,又失败率高。近年来,许多研究人员通过计算方法预测 miRNA 与疾病之间的潜在关联。在本文中,我们提出了一种使用深度协同过滤的新方法,称为 DCFMDA,用于预测 miRNA-疾病的潜在关联。为了提高预测性能,我们在深度协同过滤框架中集成了神经网络矩阵分解(NNMF)和多层感知机(MLP)。我们利用已知的 miRNA-疾病关联,通过 NNMF 捕获 miRNA-疾病相互作用特征,利用 miRNA 相似性和疾病相似性,通过 MLP 分别提取 miRNA 特征向量和疾病特征向量。最后,我们合并 NNMF 和 MLP 的输出,得到预测矩阵。实验结果表明,与其他现有计算方法相比,我们的方法在 10 折交叉验证中可以达到 0.9466 的 AUC。此外,案例研究表明,DCFMDA 可以有效地预测乳腺癌、结肠癌、肾癌、白血病和淋巴瘤的候选 miRNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8af/7929672/4d6ff5c422f0/BMRI2021-6652948.001.jpg

相似文献

1
Prediction of miRNA-Disease Association Using Deep Collaborative Filtering.
Biomed Res Int. 2021 Feb 23;2021:6652948. doi: 10.1155/2021/6652948. eCollection 2021.
2
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
PLoS Comput Biol. 2018 Aug 24;14(8):e1006418. doi: 10.1371/journal.pcbi.1006418. eCollection 2018 Aug.
3
An improved random forest-based computational model for predicting novel miRNA-disease associations.
BMC Bioinformatics. 2019 Dec 3;20(1):624. doi: 10.1186/s12859-019-3290-7.
5
Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering.
BMC Med Inform Decis Mak. 2021 Aug 30;21(Suppl 1):254. doi: 10.1186/s12911-021-01616-5.
6
A Novel Neighborhood-Based Computational Model for Potential MiRNA-Disease Association Prediction.
Comput Math Methods Med. 2019 Jan 17;2019:5145646. doi: 10.1155/2019/5145646. eCollection 2019.
7
PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.
PLoS Comput Biol. 2017 Mar 24;13(3):e1005455. doi: 10.1371/journal.pcbi.1005455. eCollection 2017 Mar.
8
Prediction of miRNA-disease associations by neural network-based deep matrix factorization.
Methods. 2023 Apr;212:1-9. doi: 10.1016/j.ymeth.2023.02.003. Epub 2023 Feb 21.
9
A graph auto-encoder model for miRNA-disease associations prediction.
Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa240.

引用本文的文献

1
2
DRaW: prediction of COVID-19 antivirals by deep learning-an objection on using matrix factorization.
BMC Bioinformatics. 2023 Feb 15;24(1):52. doi: 10.1186/s12859-023-05181-8.
3
Predicting miRNA-disease associations via layer attention graph convolutional network model.
BMC Med Inform Decis Mak. 2022 Mar 19;22(1):69. doi: 10.1186/s12911-022-01807-8.
4
A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method.
PLoS One. 2021 Jun 17;16(6):e0252971. doi: 10.1371/journal.pone.0252971. eCollection 2021.

本文引用的文献

1
Deep-belief network for predicting potential miRNA-disease associations.
Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa186.
2
Graph regularized L-nonnegative matrix factorization for miRNA-disease association prediction.
BMC Bioinformatics. 2020 Feb 18;21(1):61. doi: 10.1186/s12859-020-3409-x.
3
NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion.
Brief Bioinform. 2021 Jan 18;22(1):485-496. doi: 10.1093/bib/bbz159.
4
RCMF: a robust collaborative matrix factorization method to predict miRNA-disease associations.
BMC Bioinformatics. 2019 Dec 24;20(Suppl 25):686. doi: 10.1186/s12859-019-3260-0.
5
A network embedding-based multiple information integration method for the MiRNA-disease association prediction.
BMC Bioinformatics. 2019 Sep 12;20(1):468. doi: 10.1186/s12859-019-3063-3.
7
Ensemble of decision tree reveals potential miRNA-disease associations.
PLoS Comput Biol. 2019 Jul 22;15(7):e1007209. doi: 10.1371/journal.pcbi.1007209. eCollection 2019 Jul.
8
Prediction of Potential Disease-Associated MicroRNAs by Using Neural Networks.
Mol Ther Nucleic Acids. 2019 Jun 7;16:566-575. doi: 10.1016/j.omtn.2019.04.010. Epub 2019 Apr 18.
9
Adaptive boosting-based computational model for predicting potential miRNA-disease associations.
Bioinformatics. 2019 Nov 1;35(22):4730-4738. doi: 10.1093/bioinformatics/btz297.
10
A learning-based framework for miRNA-disease association identification using neural networks.
Bioinformatics. 2019 Nov 1;35(21):4364-4371. doi: 10.1093/bioinformatics/btz254.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验