School of Software, Qufu Normal University, Qufu, 273165, China.
BMC Bioinformatics. 2020 Feb 18;21(1):61. doi: 10.1186/s12859-020-3409-x.
The aberrant expression of microRNAs is closely connected to the occurrence and development of a great deal of human diseases. To study human diseases, numerous effective computational models that are valuable and meaningful have been presented by researchers.
Here, we present a computational framework based on graph Laplacian regularized L-nonnegative matrix factorization (GRL-NMF) for inferring possible human disease-connected miRNAs. First, manually validated disease-connected microRNAs were integrated, and microRNA functional similarity information along with two kinds of disease semantic similarities were calculated. Next, we measured Gaussian interaction profile (GIP) kernel similarities for both diseases and microRNAs. Then, we adopted a preprocessing step, namely, weighted K nearest known neighbours (WKNKN), to decrease the sparsity of the miRNA-disease association matrix network. Finally, the GRL-NMF framework was used to predict links between microRNAs and diseases.
The new method (GRL-NMF) achieved AUC values of 0.9280 and 0.9276 in global leave-one-out cross validation (global LOOCV) and five-fold cross validation (5-CV), respectively, showing that GRL-NMF can powerfully discover potential disease-related miRNAs, even if there is no known associated disease.
微小 RNA 的异常表达与大量人类疾病的发生和发展密切相关。为了研究人类疾病,研究人员提出了许多有价值和有意义的有效计算模型。
在这里,我们提出了一种基于图拉普拉斯正则化 L-非负矩阵分解(GRL-NMF)的计算框架,用于推断可能与人类疾病相关的 microRNA。首先,整合了经过人工验证的与疾病相关的 microRNA,并计算了 microRNA 功能相似性信息以及两种疾病语义相似性。接下来,我们测量了疾病和 microRNA 的高斯相互作用谱(GIP)核相似性。然后,我们采用了一种预处理步骤,即加权 K 最近已知邻居(WKNKN),以降低 miRNA-疾病关联矩阵网络的稀疏性。最后,使用 GRL-NMF 框架来预测 microRNA 和疾病之间的联系。
新方法(GRL-NMF)在全局留一法交叉验证(global LOOCV)和五折交叉验证(5-CV)中的 AUC 值分别为 0.9280 和 0.9276,表明 GRL-NMF 可以有效地发现潜在的与疾病相关的 microRNA,即使没有已知的相关疾病。