Samson Faith Pwaniyibo, Fabunmi Tosin Esther, Patrick Ambrose Teru, Jee Donghyun, Gutsaeva Diana R, Jahng Wan Jin
Department of Petroleum Chemistry, American University of Nigeria, Yola 640101, Nigeria.
Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea.
ACS Omega. 2021 Feb 16;6(8):5953-5961. doi: 10.1021/acsomega.1c00196. eCollection 2021 Mar 2.
The current study tested the hypothesis of whether specific lipids may control angiogenic reactions. Using the chorioallantoic membrane assay of the chick embryo, new vessel formation was analyzed quantitatively by gas chromatography and mass spectrometry as well as bioinformatics tools including an angiogenesis analyzer. Our biochemical experiments showed that a specific lipid composition and stoichiometry determine the angiogenesis microenvironment to accelerate or inhibit vessel formation. Specific lipids of angiogenesis determinants in the vessel area and the non-vessel area were identified as nitrooleic acid, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitic acid, oleic acid, linoleic acid, linolenic acid, epoxyoleic acid, lysophosphatidylcholine (LPC), cholesterol, 7-ketocholesterol, and docosahexaenoyl lysophosphatidylcholine (DHA-LPC). Vessel formation happens on the surface area of the hydrophilic membrane of the yolk. Our biochemical data demonstrated that angiogenesis was followed in the white lipid complex area to generate more branches, junctions, segments, and extremities. We analyzed lipid fragments in the vessel, non-vessel, and albumen area to show that each area contains a specific lipid composition and stoichiometry. Mass spectrometry data demonstrated that the vessel area has higher concentrations of nitrooleic acid, palmitic acid, stearic acid, LPC, lysophosphatidylethanolamine, cholesterol, oleic acid, linoleic acid, 7-ketocholesterol, and DHA-LPC; however, DHA and EPA were abundant in the hydrophobic non-vessel area. The purpose of vessel formation is to wrap up the yolk area to transport nutrients including specific fatty acids. Besides, angiogenesis requires aqueous albumen shown by distance-dependent vessel formation from albumen and oxygen. Higher concentrations of fatty acids are required for energy and carbon structure from the carbon-carbon bond, membrane building blocks, and amphiphilic detergent to solubilize a hydrophobic environment in the aqueous blood layer. The current study may guide that the uncovered hydrophobic or zwitterionic molecules such as DHA and DHA-LPC may control angiogenesis as antiangiogenic or proangiogenic molecules as potential drug targets for treating uncontrolled angiogenesis-related diseases, including diabetic retinopathy and age-related macular degeneration.
本研究检验了特定脂质是否可能控制血管生成反应这一假设。利用鸡胚的绒毛尿囊膜试验,通过气相色谱、质谱以及包括血管生成分析仪在内的生物信息学工具对新血管形成进行了定量分析。我们的生化实验表明,特定的脂质组成和化学计量决定了血管生成微环境,以加速或抑制血管形成。血管区域和非血管区域中血管生成决定因素的特定脂质被鉴定为硝基油酸、二十二碳六烯酸(DHA)、二十碳五烯酸(EPA)、棕榈酸、油酸、亚油酸、亚麻酸、环氧油酸、溶血磷脂酰胆碱(LPC)、胆固醇、7-酮胆固醇和二十二碳六烯酰溶血磷脂酰胆碱(DHA-LPC)。血管形成发生在卵黄亲水膜的表面区域。我们的生化数据表明,在白色脂质复合物区域会发生血管生成,从而产生更多的分支、连接、节段和末梢。我们分析了血管、非血管和蛋白区域中的脂质片段,以表明每个区域都含有特定的脂质组成和化学计量。质谱数据表明,血管区域中硝基油酸、棕榈酸、硬脂酸、LPC、溶血磷脂酰乙醇胺、胆固醇、油酸、亚油酸、7-酮胆固醇和DHA-LPC的浓度较高;然而,DHA和EPA在疏水的非血管区域含量丰富。血管形成的目的是包裹卵黄区域以运输包括特定脂肪酸在内的营养物质。此外,血管生成需要蛋白液,这由蛋白液和氧气的距离依赖性血管生成所表明。从碳-碳键、膜构建块以及两亲性去污剂中获取能量和碳结构以溶解水相血层中的疏水环境需要更高浓度的脂肪酸。本研究可能表明,未被发现的疏水或两性离子分子,如DHA和DHA-LPC,可能作为抗血管生成或促血管生成分子控制血管生成,作为治疗包括糖尿病视网膜病变和年龄相关性黄斑变性在内的不受控制的血管生成相关疾病的潜在药物靶点。