Suppr超能文献

在精神性非癫痫性发作患者的病历中发现主题。

Discovering themes in medical records of patients with psychogenic non-epileptic seizures.

作者信息

Lay Joshua, Seneviratne Udaya, Fok Anthony, Roberts Helene, Phan Thanh

机构信息

Department of Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.

Department of Neurology, Monash Medical Centre, Clayton, Victoria, Australia.

出版信息

BMJ Neurol Open. 2020 Oct 23;2(2):e000087. doi: 10.1136/bmjno-2020-000087. eCollection 2020.

Abstract

INTRODUCTION

Epileptic and psychogenic non-epileptic seizures (PNES) are common diagnostic problems encountered in hospital practice. This study explores the use of unsupervised machine learning in discovering themes in medical records of patients presenting with PNES. We hypothesised that themes generated by machine learning are comparable with the classification by human experts.

METHODS

This is a retrospective analysis of the medical records in the emergency department of patients (age >18 years) with PNES who underwent inpatient video-electroencephalography monitoring from May 2009 to June 2014 and received a final diagnosis of PNES. Prior to machine learning of written text, we applied a standardised approach in natural language processing to create a document-term matrix (removal of numbers, stop-words and punctuations, transforming fonts to lower case). The words were separated into tokens and treated as if existing within a bag-of-words. A probability of each word existing within a topic (theme) was modelled on multivariate Dirichlet distribution (R Foundation, V.3.5.0). Next, we asked four experts to independently provide a clinical interpretation of the generated topics. When the majority of (≥3) experts agreed, it was regarded as highly congruent. Interactive data are available on the web at (https://gntem2.github.io/PNES/%23topic=1&lambda=0.6&term=).

RESULTS

There were 39 patients (74.4% women, median age 35 years with range 20-82). A total of 121 documents were converted to text files for text mining. There were 15 generated topics with 12/15 topics rated as highly congruent. The main themes were about descriptors of seizures and medication use.

CONCLUSIONS

The findings from machine learning on PNES-related documentation provides evidence for the feasibility of applying machine-learning methodology to analyse large volumes of medical records. The topics generated by machine learning were congruent with interpretations by clinicians indicating this method can be used for screening of medical conditions among large volumes of medical records.

摘要

引言

癫痫发作和精神性非癫痫发作(PNES)是医院临床实践中常见的诊断难题。本研究探讨了无监督机器学习在发现PNES患者病历主题中的应用。我们假设机器学习生成的主题与人类专家的分类具有可比性。

方法

这是一项对2009年5月至2014年6月在急诊科接受住院视频脑电图监测并最终诊断为PNES的患者(年龄>18岁)病历的回顾性分析。在对书面文本进行机器学习之前,我们采用自然语言处理中的标准化方法创建文档-词项矩阵(去除数字、停用词和标点符号,将字体转换为小写)。单词被分隔成词元,并被视为存在于词袋中。每个单词在一个主题(主题)中出现的概率基于多元狄利克雷分布进行建模(R基金会,V.3.5.0)。接下来,我们请四位专家独立对生成的主题进行临床解读。当大多数(≥3)专家达成一致时,视为高度一致。交互式数据可在网页上获取(https://gntem2.github.io/PNES/%23topic=1&lambda=0.6&term=)。

结果

共有39例患者(74.4%为女性,中位年龄35岁,范围20-82岁)。总共121份文档被转换为文本文件用于文本挖掘。生成了15个主题,其中12/15个主题被评为高度一致。主要主题是关于发作的描述和药物使用。

结论

关于PNES相关文档的机器学习结果为应用机器学习方法分析大量病历的可行性提供了证据。机器学习生成的主题与临床医生的解读一致,表明该方法可用于在大量病历中筛查医疗状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/225b/7903185/39f8abc3ff08/bmjno-2020-000087f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验