Wang Jiangfeng, He Yaowu, Guo Shenghui, Ali Muhammad Umair, Zhao Changbin, Zhu Yanan, Wang Tao, Wang Yunrui, Miao Jingsheng, Wei Guodan, Meng Hong
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
ACS Appl Mater Interfaces. 2021 Mar 17;13(10):12250-12258. doi: 10.1021/acsami.0c21286. Epub 2021 Mar 8.
Development of multifunctional materials and devices has garnered enormous attention in the field of organic optoelectronics; nevertheless, achieving high mobility together with strong luminescence in a single semiconductor remains a major bottleneck. Here, a new multifunctional semiconductor molecule, 2,7-diphenylbenzo[4,5]thieno[3,2-]benzofuran (BTBF-DPh), that integrates high charge transporting [1]benzothieno[3,2-][1]benzothiophene with a strongly emissive furan group, is synthesized and applied in three types of optoelectronic devices, including organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic phototransistors (OPTs). OLEDs based on BTBF-DPh as the emissive layer showed a blue emission with CIE coordinates of (0.151, 0.069) and a maximum current efficiency of 2.96 cd A with an external quantum efficiency of 4.23%. Meanwhile, OFETs fabricated with BTBF-DPh thin film manifested a carrier mobility of 0.181 cm V s, which is comparable to that of thiophene-based counterparts. Additionally, BTBF-DPh-based OPTs exhibited a maximum responsivity and detectivity of 2.07 × 10 A W and of 5.6 × 10 Jones, respectively. On the one hand, our rationally designed material, BTBF-DPh, has a dense and close-packed structure with an extended π-conjugation, facilitating charge transport through adjacent molecules. On the other hand, the weakened dipole-dipole interactions between BTBF-DPh molecules that resulted from the unambiguous J-aggregation and reduced spin-orbit coupling caused by replacing sulfur atom significantly suppress the exciton quenching, contributing to the improved photoluminescence performance. These results validate that our newly developed BTBF-DPh is a promising multifunctional organic semiconductor for optoelectronic devices.
多功能材料与器件的发展在有机光电子领域引起了极大关注;然而,在单一半导体中实现高迁移率和强发光仍然是一个主要瓶颈。在此,合成了一种新型多功能半导体分子2,7-二苯基苯并[4,5]噻吩并[3,2-]苯并呋喃(BTBF-DPh),它将高电荷传输的[1]苯并噻吩并[3,2-][1]苯并噻吩与强发光的呋喃基团相结合,并应用于三种类型的光电器件,包括有机发光二极管(OLED)、有机场效应晶体管(OFET)和有机光电晶体管(OPT)。以BTBF-DPh作为发光层的OLED呈现出CIE坐标为(0.151, 0.069)的蓝色发射,最大电流效率为2.96 cd/A,外量子效率为4.23%。同时,用BTBF-DPh薄膜制备的OFET表现出0.181 cm² V⁻¹ s⁻¹的载流子迁移率,与基于噻吩的同类器件相当。此外,基于BTBF-DPh的OPT分别表现出2.07×10⁻² A W⁻¹的最大响应度和5.6×10¹¹ Jones的探测率。一方面,我们合理设计的材料BTBF-DPh具有密集且紧密堆积的结构以及扩展的π共轭,有利于电荷通过相邻分子传输。另一方面,由明确的J-聚集导致的BTBF-DPh分子间偶极-偶极相互作用减弱以及因取代硫原子而降低的自旋-轨道耦合显著抑制了激子猝灭,有助于提高光致发光性能。这些结果证实了我们新开发的BTBF-DPh是一种用于光电器件的有前途的多功能有机半导体。