State Key Laboratory for Modification of Chemical Fibres and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai 201600, China.
J Mater Chem B. 2021 Mar 21;9(11):2717-2726. doi: 10.1039/d0tb01797c. Epub 2021 Mar 8.
Strong nonspecific protein/cell adhesion on conducting polymer (CP)-based bioelectronic devices can cause an increase in the impedance or the malfunction of the devices. Incorporating oligo(ethylene glycol) or zwitterionic functionalities with CPs has demonstrated superior performance in the reduction of nonspecific adhesion. However, there is no report on the evaluation of the antifouling stability of oligo(ethylene glycol) and zwitterion-functionalized CPs under electrical stimulation as a simulation of the real situation of device operation. Moreover, there is a lack of understanding of the correlation between the molecular structure of antifouling CPs and the antifouling and electrochemical stabilities of the CP-based electrodes. To address the aforementioned issue, we fabricated a platform with antifouling poly(3,4-ethylenedioxythiophene) (PEDOT) featuring tri(ethylene glycol), tetra(ethylene glycol), sulfobetaine, or phosphorylcholine (PEDOT-PC) to evaluate the stability of the antifouling/electrochemical properties of antifouling PEDOTs before and after electrical stimulation. The results reveal that the PEDOT-PC electrode not only exhibits good electrochemical stability, low impedance, and small voltage excursion, but also shows excellent resistance toward proteins and HAPI microglial cells, as a cell model of inflammation, after the electrical stimulation. The stable antifouling/electrochemical properties of zwitterionic PEDOT-PC may aid its diverse applications in bioelectronic devices in the future.
在基于导电聚合物 (CP) 的生物电子设备上,强烈的非特异性蛋白质/细胞黏附会导致设备阻抗增加或故障。在 CP 中加入聚乙二醇 (Oligo(ethylene glycol)) 或两性离子官能团已被证明可显著降低非特异性黏附。然而,目前尚无关于聚乙二醇和两性离子功能化 CP 在电刺激下作为设备实际操作情况模拟的抗污稳定性评估的报道。此外,对于抗污 CP 的分子结构与 CP 基电极的抗污和电化学稳定性之间的相关性,我们也缺乏了解。为了解决上述问题,我们构建了一个具有抗污功能的聚(3,4-亚乙基二氧噻吩)(PEDOT)平台,其特征为三(乙二醇)、四(乙二醇)、磺基甜菜碱或磷酰胆碱(PEDOT-PC),以评估电刺激前后抗污 PEDOT 的抗污/电化学稳定性。结果表明,PEDOT-PC 电极不仅表现出良好的电化学稳定性、低阻抗和小电压偏移,而且在电刺激后,对蛋白质和 HAPI 小胶质细胞(炎症的细胞模型)也表现出优异的抗污性。两性离子 PEDOT-PC 的稳定抗污/电化学性能可能有助于其在未来在生物电子设备中的广泛应用。