Suppr超能文献

Hox 基因对于双色碧凤蝶眼斑的发育是必不可少的。

Hox genes are essential for the development of eyespots in Bicyclus anynana butterflies.

机构信息

Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore.

Science Division, Yale-NUS College, 138609 Singapore, Singapore.

出版信息

Genetics. 2021 Mar 3;217(1):1-9. doi: 10.1093/genetics/iyaa005.

Abstract

The eyespot patterns found on the wings of nymphalid butterflies are novel traits that originated first in hindwings and subsequently in forewings, suggesting that eyespot development might be dependent on Hox genes. Hindwings differ from forewings in the expression of Ultrabithorax (Ubx), but the function of this Hox gene in eyespot development as well as that of another Hox gene Antennapedia (Antp), expressed specifically in eyespots centers on both wings, are still unclear. We used CRISPR-Cas9 to target both genes in Bicyclus anynana butterflies. We show that Antp is essential for eyespot development on the forewings and for the differentiation of white centers and larger eyespots on hindwings, whereas Ubx is essential not only for the development of at least some hindwing eyespots but also for repressing the size of other eyespots. Additionally, Antp is essential for the development of silver scales in male wings. In summary, Antp and Ubx, in addition to their conserved roles in modifying serially homologous segments along the anterior-posterior axis of insects, have acquired a novel role in promoting the development of a new set of serial homologs, the eyespot patterns, in both forewings (Antp) and hindwings (Antp and Ubx) of B. anynana butterflies. We propose that the peculiar pattern of eyespot origins on hindwings first, followed by forewings, could be due to an initial co-option of Ubx into eyespot development followed by a later, partially redundant, co-option of Antp into the same network.

摘要

眼斑模式在蛱蝶翅膀上的出现是新颖的特征,首先出现在后翅,随后出现在前翅,这表明眼斑的发育可能依赖于 Hox 基因。后翅与前翅在 Ultrabithorax(Ubx)的表达上存在差异,但该 Hox 基因在眼斑发育中的功能,以及另一个 Hox 基因 Antennapedia(Antp)在两翼眼斑中心的特异性表达,仍不清楚。我们使用 CRISPR-Cas9 靶向 Bicyclus anynana 蝴蝶中的这两个基因。我们表明,Antp 对于前翅眼斑的发育以及后翅白色中心和较大眼斑的分化是必不可少的,而 Ubx 不仅对于至少一些后翅眼斑的发育是必不可少的,而且对于抑制其他眼斑的大小也是必不可少的。此外,Antp 对于雄性翅膀中银鳞的发育也是必不可少的。总之,Antp 和 Ubx 除了在昆虫前后轴的串列同源节段的修饰中具有保守作用外,还在促进一组新的串列同源体(眼斑模式)的发育中获得了新的作用,这些模式在前翅(Antp)和后翅(Antp 和 Ubx)中都存在。我们提出,后翅首先出现眼斑,然后在前翅出现眼斑的特殊模式可能是由于 Ubx 最初被纳入眼斑发育,随后 Antp 被部分冗余地纳入同一网络。

相似文献

1
Hox genes are essential for the development of eyespots in Bicyclus anynana butterflies.
Genetics. 2021 Mar 3;217(1):1-9. doi: 10.1093/genetics/iyaa005.
3
Over-expression of Ultrabithorax alters embryonic body plan and wing patterns in the butterfly Bicyclus anynana.
Dev Biol. 2014 Oct 15;394(2):357-66. doi: 10.1016/j.ydbio.2014.08.020. Epub 2014 Aug 26.
6
Ultrabithorax function in butterfly wings and the evolution of insect wing patterns.
Curr Biol. 1999 Feb 11;9(3):109-15. doi: 10.1016/s0960-9822(99)80064-5.
7
Differential involvement of Hedgehog signaling in butterfly wing and eyespot development.
PLoS One. 2012;7(12):e51087. doi: 10.1371/journal.pone.0051087. Epub 2012 Dec 5.
8
Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies.
Dev Biol. 2017 Sep 1;429(1):177-185. doi: 10.1016/j.ydbio.2017.06.030. Epub 2017 Jun 28.
9
Predation favours butterflies with fewer forewing eyespots.
Proc Biol Sci. 2021 May 26;288(1951):20202840. doi: 10.1098/rspb.2020.2840.
10
Multiple Loci Control Eyespot Number Variation on the Hindwings of Butterflies.
Genetics. 2020 Apr;214(4):1059-1078. doi: 10.1534/genetics.120.303059. Epub 2020 Feb 4.

引用本文的文献

1
Phylogeny and divergence time estimation of Io moths and relatives (Lepidoptera: Saturniidae: ).
PeerJ. 2024 May 30;12:e17365. doi: 10.7717/peerj.17365. eCollection 2024.
2
-regulatory modes of inactivation in butterfly forewings.
Elife. 2024 Jan 23;12:RP90846. doi: 10.7554/eLife.90846.
3
CRISPR/Cas9-Mediated Mutagenesis of in .
Insects. 2023 Dec 29;15(1):16. doi: 10.3390/insects15010016.
4
Detection and measurement of butterfly eyespot and spot patterns using convolutional neural networks.
PLoS One. 2023 Feb 13;18(2):e0280998. doi: 10.1371/journal.pone.0280998. eCollection 2023.
6
High-quality reference genomes of swallowtail butterflies provide insights into their coloration evolution.
Zool Res. 2022 May 18;43(3):367-379. doi: 10.24272/j.issn.2095-8137.2021.303.
10
Dissection of Larval and Pupal Wings of Butterflies.
Methods Protoc. 2020 Jan 10;3(1):5. doi: 10.3390/mps3010005.

本文引用的文献

2
CRISPR-Cas9 Mediated Genome Editing in Butterflies.
Methods Protoc. 2018 May 15;1(2):16. doi: 10.3390/mps1020016.
3
A homeotic shift late in development drives mimetic color variation in a bumble bee.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11857-11865. doi: 10.1073/pnas.1900365116. Epub 2019 May 1.
4
Activation of butterfly eyespots by Distal-less is consistent with a reaction-diffusion process.
Development. 2019 May 9;146(9):dev169367. doi: 10.1242/dev.169367.
5
Melanin Pathway Genes Regulate Color and Morphology of Butterfly Wing Scales.
Cell Rep. 2018 Jul 3;24(1):56-65. doi: 10.1016/j.celrep.2018.05.092.
6
specifies dorsal wing patterns and sexual traits in butterflies.
Proc Biol Sci. 2018 Feb 28;285(1873). doi: 10.1098/rspb.2017.2685.
8
Ultrabithorax and the evolution of insect forewing/hindwing differentiation.
Curr Opin Insect Sci. 2017 Feb;19:8-15. doi: 10.1016/j.cois.2016.10.007. Epub 2016 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验