Suppr超能文献

大气水汽压亏缺升高对植物生理学和生产力的系统影响。

Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity.

机构信息

Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA.

Department of Biology, University of Western Ontario, London, ON, Canada.

出版信息

Glob Chang Biol. 2021 May;27(9):1704-1720. doi: 10.1111/gcb.15548. Epub 2021 Mar 8.

Abstract

Earth is currently undergoing a global increase in atmospheric vapor pressure deficit (VPD), a trend which is expected to continue as climate warms. This phenomenon has been associated with productivity decreases in ecosystems and yield penalties in crops, with these losses attributed to photosynthetic limitations arising from decreased stomatal conductance. Such VPD increases, however, have occurred over decades, which raises the possibility that stomatal acclimation to VPD plays an important role in determining plant productivity under high VPD. Furthermore, evidence points to more far-ranging and complex effects of elevated VPD on plant physiology, extending to the anatomical, biochemical, and developmental levels, which could vary substantially across species. Because these complex effects are typically not considered in modeling frameworks, we conducted a quantitative literature review documenting temperature-independent VPD effects on 112 species and 59 traits and physiological variables, in order to develop an integrated and mechanistic physiological framework. We found that VPD increase reduced yield and primary productivity, an effect that was partially mediated by stomatal acclimation, and also linked with changes in leaf anatomy, nutrient, and hormonal status. The productivity decrease was also associated with negative effects on reproductive development, and changes in architecture and growth rates that could decrease the evaporative surface or minimize embolism risk. Cross-species quantitative relationships were found between levels of VPD increase and trait responses, and we found differences across plant groups, indicating that future VPD impacts will depend on community assembly and crop functional diversity. Our analysis confirms predictions arising from the hydraulic corollary to Darcy's law, outlines a systemic physiological framework of plant responses to rising VPD, and provides recommendations for future research to better understand and mitigate VPD-mediated climate change effects on ecosystems and agro-systems.

摘要

地球目前正经历着大气水汽压亏缺(VPD)的全球性增加,随着气候变暖,这种趋势预计将持续下去。这种现象与生态系统生产力下降和作物产量下降有关,这些损失归因于气孔导度降低导致的光合作用限制。然而,这种 VPD 的增加已经持续了几十年,这就提出了一个可能性,即 VPD 对气孔的驯化在高 VPD 下决定植物生产力方面起着重要作用。此外,有证据表明,升高的 VPD 对植物生理学有更广泛和更复杂的影响,延伸到解剖学、生物化学和发育水平,这些水平在不同物种之间可能有很大差异。由于这些复杂的影响在建模框架中通常没有被考虑到,我们进行了一项定量文献综述,记录了 112 个物种和 59 个特征和生理变量的与温度无关的 VPD 效应,以建立一个综合和机制性的生理框架。我们发现,VPD 的增加降低了产量和初级生产力,这种效应部分是由气孔驯化介导的,也与叶片解剖结构、养分和激素状态的变化有关。生产力的下降也与生殖发育的负面影响有关,以及与结构和生长速度的变化有关,这些变化可能会降低蒸发表面或最大限度地减少栓塞风险。在物种间,我们发现 VPD 增加水平与特征响应之间存在定量关系,并且我们发现不同植物群体之间存在差异,这表明未来的 VPD 影响将取决于群落组装和作物功能多样性。我们的分析证实了达西定律液压推论所提出的预测,概述了植物对不断上升的 VPD 的系统生理反应框架,并为未来的研究提供了建议,以更好地理解和减轻 VPD 介导的气候变化对生态系统和农业系统的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验