Wang Huan, Liu Zhiliang, Peng Dandan, Yang Mei, Qin Yong
IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4757-4769. doi: 10.1109/TNNLS.2021.3060494. Epub 2022 Aug 31.
Accurate and real-time fault diagnosis (FD) and working conditions identification (WCI) are the key to ensuring the safe operation of mechanical systems. We observe that there is a close correlation between the fault condition and the working condition in the vibration signal. Most of the intelligent FD methods only learn some features from the vibration signals and then use them to identify fault categories. They ignore the impact of working conditions on the bearing system, and such a single-task learning method cannot learn the complementary information contained in multiple related tasks. Therefore, this article is devoted to mining richer and complementary globally shared features from vibration signals to complete the FD and WCI of rolling bearings at the same time. To this end, we propose a novel multitask attention convolutional neural network (MTA-CNN) that can automatically give feature-level attention to specific tasks. The MTA-CNN consists of a global feature shared network (GFS-network) for learning globally shared features and K task-specific networks with feature-level attention module (FLA-module). This architecture allows the FLA-module to automatically learn the features of specific tasks from globally shared features, thereby sharing information among different tasks. We evaluated our method on the wheelset bearing data set and motor bearing data set. The results show that our method has a better performance than the state-of-the-art deep learning methods and strongly prove that our multitask learning mechanism can improve the results of each task.
准确且实时的故障诊断(FD)和工作状态识别(WCI)是确保机械系统安全运行的关键。我们观察到振动信号中的故障状态与工作状态之间存在密切关联。大多数智能FD方法仅从振动信号中学习一些特征,然后用它们来识别故障类别。它们忽略了工作条件对轴承系统的影响,并且这种单任务学习方法无法学习多个相关任务中包含的互补信息。因此,本文致力于从振动信号中挖掘更丰富且互补的全局共享特征,以同时完成滚动轴承的FD和WCI。为此,我们提出了一种新颖的多任务注意力卷积神经网络(MTA-CNN),它可以自动对特定任务给予特征级别的关注。MTA-CNN由一个用于学习全局共享特征的全局特征共享网络(GFS-network)和K个带有特征级注意力模块(FLA-module)的特定任务网络组成。这种架构允许FLA-module从全局共享特征中自动学习特定任务的特征,从而在不同任务之间共享信息。我们在轮对轴承数据集和电机轴承数据集上评估了我们的方法。结果表明,我们的方法比当前最先进的深度学习方法具有更好的性能,并有力地证明了我们的多任务学习机制可以改善每个任务的结果。