Suppr超能文献

QIBA 指南:用于 COVID-19 定量成像应用的计算机断层扫描成像。

QIBA guidance: Computed tomography imaging for COVID-19 quantitative imaging applications.

机构信息

Accumetra, LLC, United States of America.

University of Wisconsin - Madison, United States of America.

出版信息

Clin Imaging. 2021 Sep;77:151-157. doi: 10.1016/j.clinimag.2021.02.017. Epub 2021 Feb 25.

Abstract

As the COVID-19 pandemic impacts global populations, computed tomography (CT) lung imaging is being used in many countries to help manage patient care as well as to rapidly identify potentially useful quantitative COVID-19 CT imaging biomarkers. Quantitative COVID-19 CT imaging applications, typically based on computer vision modeling and artificial intelligence algorithms, include the potential for better methods to assess COVID-19 extent and severity, assist with differential diagnosis of COVID-19 versus other respiratory conditions, and predict disease trajectory. To help accelerate the development of robust quantitative imaging algorithms and tools, it is critical that CT imaging is obtained following best practices of the quantitative lung CT imaging community. Toward this end, the Radiological Society of North America's (RSNA) Quantitative Imaging Biomarkers Alliance (QIBA) CT Lung Density Profile Committee and CT Small Lung Nodule Profile Committee developed a set of best practices to guide clinical sites using quantitative imaging solutions and to accelerate the international development of quantitative CT algorithms for COVID-19. This guidance document provides quantitative CT lung imaging recommendations for COVID-19 CT imaging, including recommended CT image acquisition settings for contemporary CT scanners. Additional best practice guidance is provided on scientific publication reporting of quantitative CT imaging methods and the importance of contributing COVID-19 CT imaging datasets to open science research databases.

摘要

随着 COVID-19 大流行对全球人口的影响,计算机断层扫描(CT)肺部成像在许多国家被用于帮助管理患者护理,并快速识别潜在有用的 COVID-19 CT 成像定量生物标志物。定量 COVID-19 CT 成像应用,通常基于计算机视觉建模和人工智能算法,包括更好的方法来评估 COVID-19 程度和严重程度、协助 COVID-19 与其他呼吸道疾病的鉴别诊断,以及预测疾病轨迹的潜力。为了帮助加速稳健的定量成像算法和工具的开发,至关重要的是,CT 成像应遵循定量肺部 CT 成像社区的最佳实践。为此,北美放射学会(RSNA)的定量成像生物标志物联盟(QIBA)的 CT 肺密度分析小组委员会和 CT 小结节分析小组委员会制定了一套最佳实践,以指导使用定量成像解决方案的临床站点,并加速 COVID-19 的定量 CT 算法的国际开发。本指导文件提供了 COVID-19 CT 成像的定量 CT 肺部成像建议,包括当代 CT 扫描仪的推荐 CT 图像采集设置。还提供了关于定量 CT 成像方法的科学出版物报告以及向开放科学研究数据库贡献 COVID-19 CT 成像数据集的重要性的最佳实践指南。

相似文献

6
Artificial intelligence-driven assessment of radiological images for COVID-19.人工智能驱动的 COVID-19 放射影像评估。
Comput Biol Med. 2021 Sep;136:104665. doi: 10.1016/j.compbiomed.2021.104665. Epub 2021 Jul 21.
7
Artificial intelligence to codify lung CT in Covid-19 patients.人工智能对新冠病毒患者肺部 CT 进行编码。
Radiol Med. 2020 May;125(5):500-504. doi: 10.1007/s11547-020-01195-x. Epub 2020 May 4.

引用本文的文献

9
The need for standards for COVID-19 quantitative imaging analysis applications.对COVID-19定量成像分析应用标准的需求。
Clin Imaging. 2021 Sep;77:299-300. doi: 10.1016/j.clinimag.2021.05.010. Epub 2021 May 19.

本文引用的文献

4
Serial Quantitative Chest CT Assessment of COVID-19: A Deep Learning Approach.COVID-19的胸部CT序列定量评估:一种深度学习方法。
Radiol Cardiothorac Imaging. 2020 Mar 30;2(2):e200075. doi: 10.1148/ryct.2020200075. eCollection 2020 Apr.
5
Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19.胸部CT严重程度评分:一种评估重症COVID-19的影像学工具。
Radiol Cardiothorac Imaging. 2020 Mar 30;2(2):e200047. doi: 10.1148/ryct.2020200047. eCollection 2020 Apr.
8
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.一种用于筛查2019冠状病毒病肺炎的深度学习系统。
Engineering (Beijing). 2020 Oct;6(10):1122-1129. doi: 10.1016/j.eng.2020.04.010. Epub 2020 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验