Williams Christopher D, Kalayan Jas, Burton Neil A, Bryce Richard A
Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester Oxford Road Manchester M13 9PL UK
Science and Technologies Facilities Council (STFC), Daresbury Laboratory Keckwick Lane, Daresbury Warrington WA4 4AD UK.
Chem Sci. 2024 Jul 8;15(32):12780-12795. doi: 10.1039/d4sc01109k. eCollection 2024 Aug 14.
Computational simulation methods based on machine learned potentials (MLPs) promise to revolutionise shape prediction of flexible molecules in solution, but their widespread adoption has been limited by the way in which training data is generated. Here, we present an approach which allows the key conformational degrees of freedom to be properly represented in reference molecular datasets. MLPs trained on these datasets using a global descriptor scheme are generalisable in conformational space, providing quantum chemical accuracy for all conformers. These MLPs are capable of propagating long, stable molecular dynamics trajectories, an attribute that has remained a challenge. We deploy the MLPs in obtaining converged conformational free energy surfaces for flexible molecules well-tempered metadynamics simulations; this approach provides a hitherto inaccessible route to accurately computing the structural, dynamical and thermodynamical properties of a wide variety of flexible molecular systems. It is further demonstrated that MLPs must be trained on reference datasets with complete coverage of conformational space, including in barrier regions, to achieve stable molecular dynamics trajectories.
基于机器学习势(MLP)的计算模拟方法有望彻底改变溶液中柔性分子的形状预测,但它们的广泛应用受到训练数据生成方式的限制。在这里,我们提出了一种方法,该方法允许在参考分子数据集中正确表示关键的构象自由度。使用全局描述符方案在这些数据集上训练的MLP在构象空间中具有通用性,为所有构象异构体提供量子化学精度。这些MLP能够传播长的、稳定的分子动力学轨迹,这一特性一直是一个挑战。我们将MLP应用于通过温度加速分子动力学模拟获得柔性分子的收敛构象自由能表面;这种方法为准确计算各种柔性分子系统的结构、动力学和热力学性质提供了一条迄今无法实现的途径。进一步证明,MLP必须在构象空间完全覆盖的参考数据集上进行训练,包括在势垒区域,以实现稳定的分子动力学轨迹。