Engineering Laboratory, University of Cambridge, Cambridge, CB2 1PZUnited Kingdom.
Department of Physics and Materials Science, University of Luxembourg, L-1511Luxembourg City, Luxembourg.
J Chem Theory Comput. 2021 Dec 14;17(12):7696-7711. doi: 10.1021/acs.jctc.1c00647. Epub 2021 Nov 4.
We demonstrate that fast and accurate linear force fields can be built for molecules using the atomic cluster expansion (ACE) framework. The ACE models parametrize the potential energy surface in terms of body-ordered symmetric polynomials making the functional form reminiscent of traditional molecular mechanics force fields. We show that the four- or five-body ACE force fields improve on the accuracy of the empirical force fields by up to a factor of 10, reaching the accuracy typical of recently proposed machine-learning-based approaches. We not only show state of the art accuracy and speed on the widely used MD17 and ISO17 benchmark data sets, but we also go beyond RMSE by comparing a number of ML and empirical force fields to ACE on more important tasks such as normal-mode prediction, high-temperature molecular dynamics, dihedral torsional profile prediction, and even bond breaking. We also demonstrate the smoothness, transferability, and extrapolation capabilities of ACE on a new challenging benchmark data set comprised of a potential energy surface of a flexible druglike molecule.
我们证明,使用原子簇展开(ACE)框架可以为分子构建快速准确的线性力场。ACE 模型根据体序对称多项式参数化势能面,使得功能形式让人联想到传统的分子力学力场。我们表明,四体或五体 ACE 力场通过高达 10 倍的因子提高了经验力场的准确性,达到了最近提出的基于机器学习的方法的典型准确性。我们不仅在广泛使用的 MD17 和 ISO17 基准数据集上展示了最先进的准确性和速度,而且还通过将许多 ML 和经验力场与 ACE 进行比较,超越了均方根误差(RMSE),从而在更重要的任务(如正则模态预测、高温分子动力学、二面角扭转轮廓预测,甚至键断裂)上进行比较。我们还展示了 ACE 在新的具有挑战性的基准数据集上的光滑性、可转移性和外推能力,该数据集由柔性药物样分子的势能面组成。