Suppr超能文献

基于结构的虚拟筛选、分子动力学模拟和 MM-PBSA 方法:新型 SARS-CoV-2 2'-O-甲基转移酶(nsp16)抑制剂的计算鉴定。

In silico identification of novel SARS-COV-2 2'-O-methyltransferase (nsp16) inhibitors: structure-based virtual screening, molecular dynamics simulation and MM-PBSA approaches.

机构信息

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt.

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.

出版信息

J Enzyme Inhib Med Chem. 2021 Dec;36(1):727-736. doi: 10.1080/14756366.2021.1885396.

Abstract

The novel coronavirus disease COVID-19, caused by the virus SARS CoV-2, has exerted a significant unprecedented economic and medical crisis, in addition to its impact on the daily life and health care systems all over the world. Regrettably, no vaccines or drugs are currently available for this new critical emerging human disease. Joining the global fight against COVID-19, in this study we aim at identifying a potential novel inhibitor for SARS COV-2 2'-O-methyltransferase (nsp16) which is one of the most attractive targets in the virus life cycle, responsible for the viral RNA protection a cap formation process. Firstly, nsp16 enzyme bound to Sinefungin was retrieved from the protein data bank (PDB ID: 6WKQ), then, a 3D pharmacophore model was constructed to be applied to screen 48 Million drug-like compounds of the Zinc database. This resulted in only 24 compounds which were subsequently docked into the enzyme. The best four score-ordered hits from the docking outcome exhibited better scores compared to Sinefungin. Finally, three molecular dynamics (MD) simulation experiments for 150 ns were carried out as a refinement step for our proposed approach. The MD and MM-PBSA outputs revealed compound as the best potential nsp16 inhibitor herein identified, as it displayed a better stability and average binding free energy for the ligand-enzyme complex compared to Sinefungin.

摘要

新型冠状病毒病 COVID-19 是由病毒 SARS CoV-2 引起的,除了对全球日常生活和医疗保健系统造成影响外,还引发了前所未有的重大经济和医疗危机。遗憾的是,目前针对这种新出现的人类重大疾病还没有疫苗或药物。为了加入全球抗击 COVID-19 的行列,本研究旨在寻找一种可能的新型 SARS COV-2 2'-O-甲基转移酶(nsp16)抑制剂,该酶是病毒生命周期中最具吸引力的靶标之一,负责病毒 RNA 的保护和加帽过程。首先,从蛋白质数据库(PDB ID:6WKQ)中检索到与 Sinefungin 结合的 nsp16 酶,然后构建了一个 3D 药效团模型,用于筛选 Zinc 数据库中的 4800 万个类似药物的化合物。这仅产生了 24 种随后被对接进入酶的化合物。从对接结果中得分最高的前四个命中化合物与 Sinefungin 相比显示出更好的得分。最后,进行了三个 150ns 的分子动力学(MD)模拟实验,作为我们提出的方法的细化步骤。MD 和 MM-PBSA 的输出结果表明,化合物 是目前发现的最有潜力的 nsp16 抑制剂,因为与 Sinefungin 相比,它显示出更好的配体-酶复合物稳定性和平均结合自由能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ff/7946047/c0837b2912e1/IENZ_A_1885396_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验