Suppr超能文献

复杂的酵母-细菌相互作用会影响工业乙醇发酵的产量。

Complex yeast-bacteria interactions affect the yield of industrial ethanol fermentation.

机构信息

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.

出版信息

Nat Commun. 2021 Mar 8;12(1):1498. doi: 10.1038/s41467-021-21844-7.

Abstract

Sugarcane ethanol fermentation represents a simple microbial community dominated by S. cerevisiae and co-occurring bacteria with a clearly defined functionality. In this study, we dissect the microbial interactions in sugarcane ethanol fermentation by combinatorically reconstituting every possible combination of species, comprising approximately 80% of the biodiversity in terms of relative abundance. Functional landscape analysis shows that higher-order interactions counterbalance the negative effect of pairwise interactions on ethanol yield. In addition, we find that Lactobacillus amylovorus improves the yeast growth rate and ethanol yield by cross-feeding acetaldehyde, as shown by flux balance analysis and laboratory experiments. Our results suggest that Lactobacillus amylovorus could be considered a beneficial bacterium with the potential to improve sugarcane ethanol fermentation yields by almost 3%. These data highlight the biotechnological importance of comprehensively studying microbial communities and could be extended to other microbial systems with relevance to human health and the environment.

摘要

甘蔗乙醇发酵代表了一个简单的微生物群落,主要由酿酒酵母和同时存在的细菌组成,它们具有明确的功能。在这项研究中,我们通过组合重建每个可能的物种组合来剖析甘蔗乙醇发酵中的微生物相互作用,这些组合涵盖了相对丰度的约 80%的生物多样性。功能景观分析表明,更高阶的相互作用抵消了成对相互作用对乙醇产量的负面影响。此外,我们发现,通过乙醛的交叉喂养,淀粉乳杆菌可以提高酵母的生长速率和乙醇产量,这通过通量平衡分析和实验室实验得到了证实。我们的结果表明,淀粉乳杆菌可以被认为是一种有益的细菌,有可能将甘蔗乙醇发酵的产量提高近 3%。这些数据突出了全面研究微生物群落的生物技术重要性,并且可以扩展到与人类健康和环境相关的其他微生物系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b75f/7940389/4e39625c42d6/41467_2021_21844_Fig1_HTML.jpg

相似文献

1
Complex yeast-bacteria interactions affect the yield of industrial ethanol fermentation.
Nat Commun. 2021 Mar 8;12(1):1498. doi: 10.1038/s41467-021-21844-7.
2
Interaction of Saccharomyces cerevisiae-Lactobacillus fermentum-Dekkera bruxellensis and feedstock on fuel ethanol fermentation.
Antonie Van Leeuwenhoek. 2018 Sep;111(9):1661-1672. doi: 10.1007/s10482-018-1056-2. Epub 2018 Feb 27.
3
Sugarcane must fed-batch fermentation by Saccharomyces cerevisiae: impact of sterilized and non-sterilized sugarcane must.
Antonie Van Leeuwenhoek. 2019 Aug;112(8):1177-1187. doi: 10.1007/s10482-019-01250-2. Epub 2019 Mar 4.
4
Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.
Antonie Van Leeuwenhoek. 2014 Jan;105(1):169-77. doi: 10.1007/s10482-013-0063-6. Epub 2013 Nov 7.
7
Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses.
J Ind Microbiol Biotechnol. 2008 Dec;35(12):1605-13. doi: 10.1007/s10295-008-0404-z. Epub 2008 Aug 7.
9
Online monitoring of the morphology of an industrial sugarcane biofuel yeast strain via in situ microscopy.
J Microbiol Methods. 2020 Aug;175:105973. doi: 10.1016/j.mimet.2020.105973. Epub 2020 Jun 6.
10
Yeast selection for fuel ethanol production in Brazil.
FEMS Yeast Res. 2008 Nov;8(7):1155-63. doi: 10.1111/j.1567-1364.2008.00428.x. Epub 2008 Aug 22.

引用本文的文献

1
Lactobacilli biology, applications and host interactions.
Nat Rev Microbiol. 2025 Jul 23. doi: 10.1038/s41579-025-01205-7.
2
Moving from genome-scale to community-scale metabolic models for the human gut microbiome.
Nat Microbiol. 2025 May;10(5):1055-1066. doi: 10.1038/s41564-025-01972-2. Epub 2025 Apr 11.
3
Response of alcohol fermentation strains, mixed fermentation and extremozymes interactions on wine flavor.
Front Microbiol. 2025 Jan 29;16:1532539. doi: 10.3389/fmicb.2025.1532539. eCollection 2025.
4
The Antibacterial Activity of Yeasts from Unique Biocenoses.
Acta Naturae. 2024 Oct-Dec;16(4):95-104. doi: 10.32607/actanaturae.27527.
7
Engineered microbial consortia for next-generation feedstocks.
Biotechnol Notes. 2024 Jan 17;5:23-26. doi: 10.1016/j.biotno.2024.01.002. eCollection 2024.
8
Guided by the principles of microbiome engineering: Accomplishments and perspectives for environmental use.
mLife. 2022 Nov 3;1(4):382-398. doi: 10.1002/mlf2.12043. eCollection 2022 Dec.
9
Sparsity of higher-order landscape interactions enables learning and prediction for microbiomes.
Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2307313120. doi: 10.1073/pnas.2307313120. Epub 2023 Nov 22.
10
Performance and robustness analysis reveals phenotypic trade-offs in yeast.
Life Sci Alliance. 2023 Oct 30;7(1). doi: 10.26508/lsa.202302215. Print 2024 Jan.

本文引用的文献

1
High-order interactions distort the functional landscape of microbial consortia.
PLoS Biol. 2019 Dec 12;17(12):e3000550. doi: 10.1371/journal.pbio.3000550. eCollection 2019 Dec.
2
Simple organizing principles in microbial communities.
Curr Opin Microbiol. 2018 Oct;45:195-202. doi: 10.1016/j.mib.2018.11.007. Epub 2018 Nov 29.
3
Fast automated reconstruction of genome-scale metabolic models for microbial species and communities.
Nucleic Acids Res. 2018 Sep 6;46(15):7542-7553. doi: 10.1093/nar/gky537.
4
Understanding how microbiomes influence the systems they inhabit.
Nat Microbiol. 2018 Sep;3(9):977-982. doi: 10.1038/s41564-018-0201-z. Epub 2018 Aug 24.
5
A synthetic medium to simulate sugarcane molasses.
Biotechnol Biofuels. 2018 Aug 11;11:221. doi: 10.1186/s13068-018-1221-x. eCollection 2018.
6
Emergent simplicity in microbial community assembly.
Science. 2018 Aug 3;361(6401):469-474. doi: 10.1126/science.aat1168.
8
Deciphering microbial interactions in synthetic human gut microbiome communities.
Mol Syst Biol. 2018 Jun 21;14(6):e8157. doi: 10.15252/msb.20178157.
9
The social network of microorganisms - how auxotrophies shape complex communities.
Nat Rev Microbiol. 2018 Jun;16(6):383-390. doi: 10.1038/s41579-018-0004-5.
10
Competing species leave many potential niches unfilled.
Nat Ecol Evol. 2017 Oct;1(10):1495-1501. doi: 10.1038/s41559-017-0295-3. Epub 2017 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验