Suppr超能文献

设计用于燃料和化学品生产的微生物生物催化剂的原理与实践。

Principles and practice of designing microbial biocatalysts for fuel and chemical production.

机构信息

Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.

出版信息

J Ind Microbiol Biotechnol. 2022 Apr 14;49(2). doi: 10.1093/jimb/kuab016.

Abstract

The finite nature of fossil fuels and the environmental impact of its use have raised interest in alternate renewable energy sources. Specifically, nonfood carbohydrates, such as lignocellulosic biomass, can be used to produce next generation biofuels, including cellulosic ethanol and other nonethanol fuels like butanol. However, currently there is no native microorganism that can ferment all lignocellulosic sugars to fuel molecules. Thus, research is focused on engineering improved microbial biocatalysts for production of liquid fuels at high productivity, titer, and yield. A clear understanding and application of the basic principles of microbial physiology and biochemistry are crucial to achieve this goal. In this review, we present and discuss the construction of microbial biocatalysts that integrate these principles with ethanol-producing Escherichia coli as an example of metabolic engineering. These principles also apply to fermentation of lignocellulosic sugars to other chemicals that are currently produced from petroleum.

摘要

化石燃料的有限性和其使用带来的环境影响引起了人们对替代可再生能源的兴趣。具体来说,非食用碳水化合物,如木质纤维素生物质,可以用来生产下一代生物燃料,包括纤维素乙醇和其他非乙醇燃料,如丁醇。然而,目前还没有能够将所有木质纤维素糖发酵成燃料分子的天然微生物。因此,研究的重点是开发改良的微生物生物催化剂,以实现高生产力、高浓度和高得率生产液体燃料。要实现这一目标,必须清楚地了解和应用微生物生理学和生物化学的基本原理。在这篇综述中,我们以产乙醇大肠杆菌作为代谢工程的一个例子,提出并讨论了整合这些原理的微生物生物催化剂的构建。这些原则也适用于将木质纤维素糖发酵成其他目前由石油生产的化学品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e8/9118985/8abfcf85fd47/kuab016fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验